Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(8): e0255929, 2021.
Article in English | MEDLINE | ID: mdl-34370770

ABSTRACT

Recommender systems aim to provide users with a selection of items, based on predicting their preferences for items they have not yet rated, thus helping them filter out irrelevant ones from a large product catalogue. Collaborative filtering is a widely used mechanism to predict a particular user's interest in a given item, based on feedback from neighbour users with similar tastes. The way the user's neighbourhood is identified has a significant impact on prediction accuracy. Most methods estimate user proximity from ratings they assigned to co-rated items, regardless of their number. This paper introduces a similarity adjustment taking into account the number of co-ratings. The proposed method is based on a concordance ratio representing the probability that two users share the same taste for a new item. The probabilities are further adjusted by using the Empirical Bayes inference method before being used to weight similarities. The proposed approach improves existing similarity measures without increasing time complexity and the adjustment can be combined with all existing similarity measures. Experiments conducted on benchmark datasets confirmed that the proposed method systematically improved the recommender system's prediction accuracy performance for all considered similarity measures.


Subject(s)
Algorithms , Bayes Theorem
2.
BMC Bioinformatics ; 16: 83, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25887746

ABSTRACT

BACKGROUND: Semantic approaches such as concept-based information retrieval rely on a corpus in which resources are indexed by concepts belonging to a domain ontology. In order to keep such applications up-to-date, new entities need to be frequently annotated to enrich the corpus. However, this task is time-consuming and requires a high-level of expertise in both the domain and the related ontology. Different strategies have thus been proposed to ease this indexing process, each one taking advantage from the features of the document. RESULTS: In this paper we present USI (User-oriented Semantic Indexer), a fast and intuitive method for indexing tasks. We introduce a solution to suggest a conceptual annotation for new entities based on related already indexed documents. Our results, compared to those obtained by previous authors using the MeSH thesaurus and a dataset of biomedical papers, show that the method surpasses text-specific methods in terms of both quality and speed. Evaluations are done via usual metrics and semantic similarity. CONCLUSIONS: By only relying on neighbor documents, the User-oriented Semantic Indexer does not need a representative learning set. Yet, it provides better results than the other approaches by giving a consistent annotation scored with a global criterion - instead of one score per concept.


Subject(s)
Abstracting and Indexing , Algorithms , Information Storage and Retrieval , Natural Language Processing , Semantics , User-Computer Interface , Humans , Medical Subject Headings , Pattern Recognition, Automated , Vocabulary, Controlled
3.
J Biomed Inform ; 48: 38-53, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24269894

ABSTRACT

Ontologies are widely adopted in the biomedical domain to characterize various resources (e.g. diseases, drugs, scientific publications) with non-ambiguous meanings. By exploiting the structured knowledge that ontologies provide, a plethora of ad hoc and domain-specific semantic similarity measures have been defined over the last years. Nevertheless, some critical questions remain: which measure should be defined/chosen for a concrete application? Are some of the, a priori different, measures indeed equivalent? In order to bring some light to these questions, we perform an in-depth analysis of existing ontology-based measures to identify the core elements of semantic similarity assessment. As a result, this paper presents a unifying framework that aims to improve the understanding of semantic measures, to highlight their equivalences and to propose bridges between their theoretical bases. By demonstrating that groups of measures are just particular instantiations of parameterized functions, we unify a large number of state-of-the-art semantic similarity measures through common expressions. The application of the proposed framework and its practical usefulness is underlined by an empirical analysis of hundreds of semantic measures in a biomedical context.


Subject(s)
Medical Informatics/methods , Semantics , Algorithms , Humans , Models, Theoretical , Natural Language Processing , Reproducibility of Results , Software , Systematized Nomenclature of Medicine , Terminology as Topic , Vocabulary, Controlled
4.
Bioinformatics ; 30(5): 740-2, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24108186

ABSTRACT

UNLABELLED: The semantic measures library and toolkit are robust open-source and easy to use software solutions dedicated to semantic measures. They can be used for large-scale computations and analyses of semantic similarities between terms/concepts defined in terminologies and ontologies. The comparison of entities (e.g. genes) annotated by concepts is also supported. A large collection of measures is available. Not limited to a specific application context, the library and the toolkit can be used with various controlled vocabularies and ontology specifications (e.g. Open Biomedical Ontology, Resource Description Framework). The project targets both designers and practitioners of semantic measures providing a JAVA library, as well as a command-line tool that can be used on personal computers or computer clusters. AVAILABILITY AND IMPLEMENTATION: Downloads, documentation, tutorials, evaluation and support are available at http://www.semantic-measures-library.org.


Subject(s)
Biological Ontologies , Software , Semantics , Vocabulary, Controlled
5.
BMC Bioinformatics ; 13 Suppl 1: S4, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22373375

ABSTRACT

BACKGROUND: Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. RESULTS: This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. CONCLUSIONS: The ontology based information retrieval system described in this paper (OBIRS) is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens relevant information to provide decision help.


Subject(s)
Biological Ontologies , Computational Biology/methods , Information Storage and Retrieval/methods , Internet , User-Computer Interface , Hematopoiesis/genetics , Humans , Medical Subject Headings , PubMed , Semantics , Software , Transcription Factors/metabolism
6.
IEEE Trans Vis Comput Graph ; 15(6): 985-92, 2009.
Article in English | MEDLINE | ID: mdl-19834163

ABSTRACT

Social photos, which are taken during family events or parties, represent individuals or groups of people. We show in this paper how a Hasse diagram is an efficient visualization strategy for eliciting different groups and navigating through them. However, we do not limit this strategy to these traditional uses. Instead we show how it can also be used for assisting in indexing new photos. Indexing consists of identifying the event and people in photos. It is an integral phase that takes place before searching and sharing. In our method we use existing indexed photos to index new photos. This is performed through a manual drag and drop procedure followed by a content fusion process that we call 'propagation'. At the core of this process is the necessity to organize and visualize the photos that will be used for indexing in a manner that is easily recognizable and accessible by the user. In this respect we make use of an Object Galois Sub-Hierarchy and display it using a Hasse diagram. The need for an incremental display that maintains the user's mental map also leads us to propose a novel way of building the Hasse diagram. To validate the approach, we present some tests conducted with a sample of users that confirm the interest of this organization, visualization and indexation approach. Finally, we conclude by considering scalability, the possibility to extract social networks and automatically create personalised albums.

7.
BMC Evol Biol ; 7: 241, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18053139

ABSTRACT

BACKGROUND: Molecular sequence data have become the standard in modern day phylogenetics. In particular, several long-standing questions of mammalian evolutionary history have been recently resolved thanks to the use of molecular characters. Yet, most studies have focused on only a handful of standard markers. The availability of an ever increasing number of whole genome sequences is a golden mine for modern systematics. Genomic data now provide the opportunity to select new markers that are potentially relevant for further resolving branches of the mammalian phylogenetic tree at various taxonomic levels. DESCRIPTION: The EnsEMBL database was used to determine a set of orthologous genes from 12 available complete mammalian genomes. As targets for possible amplification and sequencing in additional taxa, more than 3,000 exons of length > 400 bp have been selected, among which 118, 368, 608, and 674 are respectively retrieved for 12, 11, 10, and 9 species. A bioinformatic pipeline has been developed to provide evolutionary descriptors for these candidate markers in order to assess their potential phylogenetic utility. The resulting OrthoMaM (Orthologous Mammalian Markers) database can be queried and alignments can be downloaded through a dedicated web interface http://kimura.univ-montp2.fr/orthomam. CONCLUSION: The importance of marker choice in phylogenetic studies has long been stressed. Our database centered on complete genome information now makes possible to select promising markers to a given phylogenetic question or a systematic framework by querying a number of evolutionary descriptors. The usefulness of the database is illustrated with two biological examples. First, two potentially useful markers were identified for rodent systematics based on relevant evolutionary parameters and sequenced in additional species. Second, a complete, gapless 94 kb supermatrix of 118 orthologous exons was assembled for 12 mammals. Phylogenetic analyses using probabilistic methods unambiguously supported the new placental phylogeny by retrieving the monophyly of Glires, Euarchontoglires, Laurasiatheria, and Boreoeutheria. Muroid rodents thus do not represent a basal placental lineage as it was mistakenly reasserted in some recent phylogenomic analyses based on fewer taxa. We expect the OrthoMaM database to be useful for further resolving the phylogenetic tree of placental mammals and for better understanding the evolutionary dynamics of their genomes, i.e., the forces that shaped coding sequences in terms of selective constraints.


Subject(s)
Databases, Genetic , Genetic Markers/genetics , Genome , Mammals/genetics , Phylogeny , Animals , Mammals/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...