Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 30(1): 5-13, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22949523

ABSTRACT

It is widely assumed that our mammalian ancestors, which lived in the Cretaceous era, were tiny animals that survived massive asteroid impacts in shelters and evolved into modern forms after dinosaurs went extinct, 65 Ma. The small size of most Mesozoic mammalian fossils essentially supports this view. Paleontology, however, is not conclusive regarding the ancestry of extant mammals, because Cretaceous and Paleocene fossils are not easily linked to modern lineages. Here, we use full-genome data to estimate the longevity and body mass of early placental mammals. Analyzing 36 fully sequenced mammalian genomes, we reconstruct two aspects of the ancestral genome dynamics, namely GC-content evolution and nonsynonymous over synonymous rate ratio. Linking these molecular evolutionary processes to life-history traits in modern species, we estimate that early placental mammals had a life span above 25 years and a body mass above 1 kg. This is similar to current primates, cetartiodactyls, or carnivores, but markedly different from mice or shrews, challenging the dominant view about mammalian origin and evolution. Our results imply that long-lived mammals existed in the Cretaceous era and were the most successful in evolution, opening new perspectives about the conditions for survival to the Cretaceous-Tertiary crisis.


Subject(s)
Biological Evolution , Genomics/methods , Mammals/genetics , Animals , Female , Fossils , Genome , Humans , Longevity , Paleontology , Phylogeny , Placenta , Pregnancy
2.
Mol Ecol Resour ; 12(5): 834-45, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22540679

ABSTRACT

Next-generation sequencing (NGS) technologies offer the opportunity for population genomic study of non-model organisms sampled in the wild. The transcriptome is a convenient and popular target for such purposes. However, designing genetic markers from NGS transcriptome data requires assembling gene-coding sequences out of short reads. This is a complex task owing to gene duplications, genetic polymorphism, alternative splicing and transcription noise. Typical assembling programmes return thousands of predicted contigs, whose connection to the species true gene content is unclear, and from which SNP definition is uneasy. Here, the transcriptomes of five diverse non-model animal species (hare, turtle, ant, oyster and tunicate) were assembled from newly generated 454 and Illumina sequence reads. In two species for which a reference genome is available, a new procedure was introduced to annotate each predicted contig as either a full-length cDNA, fragment, chimera, allele, paralogue, genomic sequence or other, based on the number of, and overlap between, blast hits to the appropriate reference. Analyses showed that (i) the highest quality assemblies are obtained when 454 and Illumina data are combined, (ii) typical de novo assemblies include a majority of irrelevant cDNA predictions and (iii) assemblies can be appropriately cleaned by filtering contigs based on length and coverage. We conclude that robust, reference-free assembly of thousands of genes from transcriptomic NGS data is possible, opening promising perspectives for transcriptome-based population genomics in animals. A Galaxy pipeline implementing our best-performing assembling strategy is provided.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Transcriptome , Animals
3.
Mol Biol Evol ; 18(6): 1103-16, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11371598

ABSTRACT

We analyze the performance of quartet methods in phylogenetic reconstruction. These methods first compute four-taxon trees (4-trees) and then use a combinatorial algorithm to infer a phylogeny that respects the inferred 4-trees as much as possible. Quartet puzzling (QP) is one of the few methods able to take weighting of the 4-trees, which is inferred by maximum likelihood, into account. QP seems to be widely used. We present weight optimization (WO), a new algorithm which is also based on weighted 4-trees. WO is faster and offers better theoretical guarantees than QP. Moreover, computer simulations indicate that the topological accuracy of WO is less dependent on the shape of the correct tree. However, although the performance of WO is better overall than that of QP, it is still less efficient than traditional phylogenetic reconstruction approaches based on pairwise evolutionary distances or maximum likelihood. This is likely related to long-branch attraction, a phenomenon to which quartet methods are very sensitive, and to inappropriate use of the initial results (weights) obtained by maximum likelihood for every quartet.


Subject(s)
Algorithms , Phylogeny , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...