Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Med Imaging ; 13: 29, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-24004511

ABSTRACT

BACKGROUND: Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan. METHODS: The MACC algorithm first identifies an outer bound for the solution path, forms a high number of iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion analysis ROIs drawn by a single expert operator. RESULTS: In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program created ROIs on follow-up scans that were in close agreement to the original expert's ROIs. Finally, in a post-hoc analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final accepted ROIS had to be created or edited by the expert. CONCLUSION: When used with an expert operator's verification of automatically created ROIs, MACC can be used to improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed in multicenter clinical trials.


Subject(s)
Algorithms , Brain/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Pattern Recognition, Automated/methods , Humans , Observer Variation , Reproducibility of Results , Sensitivity and Specificity
2.
BMC Med Imaging ; 12: 17, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22812697

ABSTRACT

BACKGROUND: Presented is the method "Detection and Outline Error Estimates" (DOEE) for assessing rater agreement in the delineation of multiple sclerosis (MS) lesions. The DOEE method divides operator or rater assessment into two parts: 1) Detection Error (DE) -- rater agreement in detecting the same regions to mark, and 2) Outline Error (OE) -- agreement of the raters in outlining of the same lesion. METHODS: DE, OE and Similarity Index (SI) values were calculated for two raters tested on a set of 17 fluid-attenuated inversion-recovery (FLAIR) images of patients with MS. DE, OE, and SI values were tested for dependence with mean total area (MTA) of the raters' Region of Interests (ROIs). RESULTS: When correlated with MTA, neither DE (ρ = .056, p=.83) nor the ratio of OE to MTA (ρ = .23, p=.37), referred to as Outline Error Rate (OER), exhibited significant correlation. In contrast, SI is found to be strongly correlated with MTA (ρ = .75, p < .001). Furthermore, DE and OER values can be used to model the variation in SI with MTA. CONCLUSIONS: The DE and OER indices are proposed as a better method than SI for comparing rater agreement of ROIs, which also provide specific information for raters to improve their agreement.


Subject(s)
Algorithms , Brain/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Subtraction Technique , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Observer Variation , Reproducibility of Results , Sensitivity and Specificity , Young Adult
3.
J Vestib Res ; 17(1): 39-46, 2007.
Article in English | MEDLINE | ID: mdl-18219103

ABSTRACT

Both sound (s-) and galvanic (g-) vestibular-evoked myogenic potential (VEMP) enable us to study the saccular pathways. However, the VEMP can be abnormal for non-vestibular factors, such as insufficient activation of the sterno-cleido-mastoid (SCM) muscle or a lesion that involves the accessory nucleus and/or nerve or the SCM muscle. These drawbacks do not affect another technique that evaluates the saccular function: the N3 potential. We recorded both the s- and the g-VEMP and the N3 potential in a group of 31 healthy subjects to establish a reference range. The N3 potential and the s-VEMP were recordable bilaterally from all the subjects, whereas the g-VEMP was undetectable uni- or bilaterally in 7 subjects. The latency and amplitude values of the s-VEMP did not differ from those of the g-VEMP. For all three techniques, the latency and amplitude values from the right and from the left recording and/or stimulation side were the same. We suggest using normative latency and amplitude values based on the mean and ratio of the right- and left-side values. The s-VEMP, the N3 potential and the auditory evoked response (ABR) were compared in 15 subjects suffering from multiple sclerosis. The three techniques detected a similar number of abnormalities, but these abnormalities were not correlated. This suggests that these different techniques should be regarded as complementary in evaluating saccular function.


Subject(s)
Evoked Potentials, Auditory, Brain Stem/physiology , Evoked Potentials, Motor/physiology , Multiple Sclerosis/physiopathology , Muscle Contraction/physiology , Reaction Time/physiology , Saccule and Utricle/physiology , Acoustic Stimulation , Adolescent , Adult , Analysis of Variance , Case-Control Studies , Female , Humans , Male , Middle Aged , Neck Muscles/physiology , Reference Values , Saccule and Utricle/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...