Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754829

ABSTRACT

Milk yield dynamics and production performance reflect how dairy cows cope with their environment. To optimize farm management, time-series of individual cow milk yield have been studied in the context of precision livestock farming, and many mathematical models have been proposed to translate raw data into useful information for the stakeholders of the dairy chain. To gain better insights on the topic, this study aimed at comparing 3 recent methods that allow to estimate individual cow potential lactation performance, using daily data recorded by the automatic milking systems of 14 dairy farms (7 Holstein, 7 Italian Simmental) from Belgium, the Netherlands, and Italy. An iterative Wood model (IW), a perturbed lactation model (PLM), and a quantile regression (QR) were compared in terms of estimated total unperturbed (i.e., expected) milk production and estimated total milk loss (relative to unperturbed yield). The IW and PLM can also be used to identify perturbations of the lactation curve and were thus compared in this regard. The outcome of this study may help a given end-user in choosing the most appropriate method according to their specific requirements. If there is a specific interest in the post-peak lactation phase, IW can be the best option. If one wants to accurately describe the perturbations of the lactation curve, PLM can be the most suitable method. If there is need for a fast and easy approach on a very large data set, QR can be the choice. Finally, as an example of application, PLM was used to analyze the effect of cow parity, calving season, and breed on their estimated lactation performance.

2.
Int J Biometeorol ; 67(12): 2047-2054, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783954

ABSTRACT

Heat stress impairs the health and performance of dairy cows, yet only a few studies have investigated the diversity of cattle behavioral responses to heat waves. This research was conducted on an Italian Holstein dairy farm equipped with precision livestock farming sensors to assess potential different behavioral patterns of the animals. Three heat waves, defined as at least five consecutive days with mean daily temperature-humidity index higher than 72, were recorded in the farm area during the summer of 2021. Individual daily milk yield data of 102 cows were used to identify "heat-sensitive" animals, meaning the cows that, under a given heat wave, experienced a milk yield drop that was not linked with other health events (e.g., mastitis). Milk yield drops were detected as perturbations of the lactation curve estimated by iteratively using Wood's equation. Individual daily minutes of lying, chewing, and activity were retrieved from ear-tag-based accelerometer sensors. Semi-parametric generalized estimating equations models were used to assess behavioral deviations of heat-sensitive cows from the herd means under heat stress conditions. Heat waves were associated with an overall increase in the herd's chewing and activity times, along with an overall decrease of lying time. Heat-sensitive cows spent approximately 15 min/days more chewing and performing activities (p < 0.05). The findings of this research suggest that the information provided by high-frequency sensor data could assist farmers in identifying cows for which personalized interventions to alleviate heat stress are needed.


Subject(s)
Heat Stress Disorders , Lactation , Female , Cattle , Animals , Lactation/physiology , Milk , Temperature , Behavior, Animal/physiology , Heat-Shock Response , Heat Stress Disorders/veterinary , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...