Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Prog Neurobiol ; 176: 73-85, 2019 05.
Article in English | MEDLINE | ID: mdl-30121237

ABSTRACT

Cerebral ischemia remains a major cause of death and disability worldwide, yet therapeutic options remain limited. Differences in sex and age play an important role in the final outcome in response to cerebral ischemia in both experimental and clinical studies: males have a higher risk and worse outcome than females at younger ages and this trend reverses in older ages. Although the molecular mechanisms underlying sex dimorphism are complex and are still not well understood, studies suggest steroid hormones, sex chromosomes, differential cell death and immune pathways, and sex-specific microRNAs may contribute to the outcome following cerebral ischemia. This review focuses on differential effects between males and females on cell death and immunological pathways in response to cerebral ischemia, the central role of innate sex differences in steroid hormone signaling, and upstreamregulation of sexually dimorphic gene expression by microRNAs.


Subject(s)
Brain Ischemia , MicroRNAs , Sex Characteristics , Adaptive Immunity/physiology , Animals , Female , Humans , Immunity, Innate/physiology , Male , Stroke/genetics , Stroke/immunology , Stroke/physiopathology , Transcriptome
2.
Trends Neurosci ; 41(2): 77-88, 2018 02.
Article in English | MEDLINE | ID: mdl-29198454

ABSTRACT

A longstanding question in cellular neuroscience is how microtubules in the axon become organized with their plus ends out, a pattern starkly different from the mixed orientation of microtubules in vertebrate dendrites. Recent attention has focused on a mechanism called polarity sorting, in which microtubules of opposite orientation are spatially separated by molecular motor proteins. Here we discuss this mechanism, and conclude that microtubules are polarity sorted in the axon by cytoplasmic dynein but that additional factors are also needed. In particular, computational modeling and experimental evidence suggest that static crosslinking proteins are required to appropriately restrict microtubule movements so that polarity sorting by cytoplasmic dynein can occur in a manner unimpeded by other motor proteins.


Subject(s)
Axons/metabolism , Cell Polarity/physiology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Animals , Cell Movement/physiology , Dendrites/metabolism , Humans
3.
Mol Biol Cell ; 28(23): 3271-3285, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28978741

ABSTRACT

We present a computational model to test a "polarity sorting" mechanism for microtubule (MT) organization in developing axons. We simulate the motor-based axonal transport of short MTs to test the hypothesis that immobilized cytoplasmic dynein motors transport short MTs with their plus ends leading, so "mal-oriented" MTs with minus-end-out are transported toward the cell body while "correctly" oriented MTs are transported in the anterograde direction away from the soma. We find that dynein-based transport of short MTs can explain the predominately plus-end-out polarity pattern of axonal MTs but that transient attachments of plus-end-directed motor proteins and nonmotile cross-linker proteins are needed to explain the frequent pauses and occasional reversals observed in live-cell imaging of MT transport. Static cross-linkers increase the likelihood of a stalled "tug-of-war" between retrograde and anterograde forces on the MT, providing an explanation for the frequent pauses of short MTs and the immobility of longer MTs. We predict that inhibition of the proposed static cross-linker will produce disordered transport of short MTs and increased mobility of longer MTs. We also predict that acute inhibition of cytoplasmic dynein will disrupt the polarity sorting of MTs by increasing the likelihood of "incorrect" sorting of MTs by plus-end-directed motors.


Subject(s)
Cell Polarity/physiology , Microtubules/metabolism , Axonal Transport/physiology , Axons/metabolism , Axons/physiology , Cell Movement , Cells, Cultured , Computer Simulation/statistics & numerical data , Cytoplasmic Dyneins/metabolism , Dyneins/metabolism , Kinesins/metabolism , Microtubules/physiology , Neurons/metabolism , Protein Transport/physiology
4.
Cell Rep ; 19(11): 2210-2219, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28614709

ABSTRACT

Axonal microtubules are predominantly organized into a plus-end-out pattern. Here, we tested both experimentally and with computational modeling whether a motor-based polarity-sorting mechanism can explain this microtubule pattern. The posited mechanism centers on cytoplasmic dynein transporting plus-end-out and minus-end-out microtubules into and out of the axon, respectively. When cytoplasmic dynein was acutely inhibited, the bi-directional transport of microtubules in the axon was disrupted in both directions, after which minus-end-out microtubules accumulated in the axon over time. Computational modeling revealed that dynein-mediated transport of microtubules can establish and preserve a predominantly plus-end-out microtubule pattern as per the details of the experimental findings, but only if a kinesin motor and a static cross-linker protein are also at play. Consistent with the predictions of the model, partial depletion of TRIM46, a protein that cross-links axonal microtubules in a manner that influences their polarity orientation, leads to an increase in microtubule transport.


Subject(s)
Cytoplasmic Dyneins/metabolism , Dyneins/metabolism , Microtubules/metabolism , Animals , Biological Transport , Cell Movement , Rats
5.
Traffic ; 18(7): 433-441, 2017 07.
Article in English | MEDLINE | ID: mdl-28471062

ABSTRACT

Many veterans of the 1990-1991 Gulf War contracted Gulf War Illness (GWI), a multisymptom disease that primarily affects the nervous system. Here, we treated cultures of human or rat neurons with diisopropyl fluorophosphate (DFP), an analog of sarin, one of the organophosphate (OP) toxicants to which the military veterans were exposed. All observed cellular defects produced by DFP were exacerbated by pretreatment with corticosterone or cortisol, which, in rat and human neurons, respectively, serves in our experiments to mimic the physical stress endured by soldiers during the war. To best mimic the disease, DFP was used below the level needed to inhibit acetylcholinesterase. We observed a diminution in the ratio of acetylated to total tubulin that was correctable by treatment with tubacin, a drug that inhibits HDAC6, the tubulin deacetylase. The reduction in microtubule acetylation was coupled with deficits in microtubule dynamics, which were correctable by HDAC6 inhibition. Deficits in mitochondrial transport and dopamine release were also improved by tubacin. Thus, various negative effects of the toxicant/stress exposures were at least partially correctable by restoring microtubule acetylation to a more normal status. Such an approach may have therapeutic benefit for individuals suffering from GWI or other neurological disorders linked to OP exposure.


Subject(s)
Anilides/pharmacology , Chemical Warfare Agents/toxicity , Hydroxamic Acids/pharmacology , Isoflurophate/toxicity , Microtubules/drug effects , Neurons/drug effects , Stress, Physiological , Acetylation , Animals , Biological Transport , Cells, Cultured , Corticosterone/pharmacology , Dopamine/metabolism , Dose-Response Relationship, Drug , Humans , Hydrocortisone/pharmacology , Microtubules/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Persian Gulf Syndrome , Rats , Tubulin/metabolism
6.
Mol Biol Cell ; 28(13): 1728-1737, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28495799

ABSTRACT

The SPAST gene, which produces two isoforms (M1 and M87) of the microtubule-severing protein spastin, is the chief gene mutated in hereditary spastic paraplegia. Haploinsufficiency is a popular explanation for the disease, in part because most of the >200 pathogenic mutations of the gene are truncating and expected to produce only vanishingly small amounts of shortened proteins. Here we studied two such mutations, N184X and S245X, and our results suggest another possibility. We found that the truncated M1 proteins can accumulate to notably higher levels than their truncated M87 or wild-type counterparts. Reminiscent of our earlier studies on a pathogenic mutation that generates full-length M1 and M87 proteins, truncated M1 was notably more detrimental to neurite outgrowth than truncated M87, and this was true for both N184X and S245X. The greater toxicity and tendency to accumulate suggest that, over time, truncated M1 could damage the corticospinal tracts of human patients. Curiously, the N184X mutation triggers the reinitiation of translation at a third start codon in SPAST, resulting in synthesis of a novel M187 spastin isoform that is able to sever microtubules. Thus microtubule severing may not be as reduced as previously assumed in the case of that mutation.


Subject(s)
Codon, Nonsense , Spastic Paraplegia, Hereditary/genetics , Spastin/genetics , Animals , Cells, Cultured , Haploinsufficiency , Humans , Microtubules/metabolism , Mutagenesis, Site-Directed , Neurites/metabolism , Neurons/metabolism , Protein Isoforms , Rats , Spastic Paraplegia, Hereditary/metabolism , Spastin/metabolism
7.
Neurology ; 88(20): 1968-1975, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28507260

ABSTRACT

Gulf War illness (GWI), which afflicts at least 25% of veterans who served in the 1990-1991 war in the Persian Gulf, is thought to be caused by deployment exposures to various neurotoxicants, including pesticides, anti-nerve gas pills, and low-level nerve agents including sarin/cyclosarin. GWI is a multisymptom disorder characterized by fatigue, joint pain, cognitive problems, and gastrointestinal complaints. The most prominent symptoms of GWI (memory problems, poor attention/concentration, chronic headaches, mood alterations, and impaired sleep) suggest that the disease primarily affects the CNS. Development of urgently needed treatments depends on experimental models appropriate for testing mechanistic hypotheses and for screening therapeutic compounds. Rodent models have been useful thus far, but are limited by their inability to assess the contribution of genetic or epigenetic background to the disease, and because disease-vulnerable proteins and pathways may be different in humans relative to rodents. As of yet, no postmortem tissue from the veterans has become available for research. We are moving forward with a paradigm shift in the study of GWI, which utilizes contemporary stem cell technology to convert somatic cells from Gulf War veterans into pluripotent cell lines that can be differentiated into various cell types, including neurons, glia, muscle, or other relevant cell types. Such cell lines are immortal and will be a resource for GWI researchers to pursue mechanistic hypotheses and therapeutics.


Subject(s)
Cellular Reprogramming , Gulf War , Neurons , Persian Gulf Syndrome/pathology , Persian Gulf Syndrome/physiopathology , Veterans , Animals , Cerebral Cortex , Humans , Induced Pluripotent Stem Cells , Mice , Neurilemma , Research Design
8.
J Cell Biol ; 213(3): 329-41, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27138250

ABSTRACT

Contemporary models for neuronal migration are grounded in the view that virtually all functionally relevant microtubules (MTs) in migrating neurons are attached to the centrosome, which occupies a position between the nucleus and a short leading process. It is assumed that MTs do not undergo independent movements but rather transduce forces that enable movements of the centrosome and nucleus. The present results demonstrate that although this is mostly true, a small fraction of the MTs are centrosome-unattached, and this permits limited sliding of MTs. When this sliding is pharmacologically inhibited, the leading process becomes shorter, migration of the neuron deviates from its normal path, and the MTs within the leading process become buckled. Partial depletion of ninein, a protein that attaches MTs to the centrosome, leads to greater numbers of centrosome-unattached MTs as well as greater sliding of MTs. Concomitantly, the soma becomes less mobile and the leading process acquires an elongated morphology akin to an axon.


Subject(s)
Microtubules/metabolism , Neurons/metabolism , Animals , Cell Movement/physiology , Centrosome/metabolism , Centrosome/ultrastructure , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/physiology , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/physiology , Microtubules/ultrastructure , Neurons/physiology , Neurons/ultrastructure , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , Phenotype , RNA Interference , Rats
9.
Cytoskeleton (Hoboken) ; 73(9): 442-60, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26887570

ABSTRACT

Neurons are terminally differentiated cells that use their microtubule arrays not for cell division but rather as architectural elements required for the elaboration of elongated axons and dendrites. In addition to acting as compression-bearing struts that provide for the shape of the neuron, microtubules also act as directional railways for organelle transport. The stability properties of neuronal microtubules are commonly discussed in the biomedical literature as crucial to the development and maintenance of the nervous system, and have recently gained attention as central to the etiology of neurodegenerative diseases. Drugs that affect microtubule stability are currently under investigation as potential therapies for disease and injury of the nervous system. There is often a lack of consistency, however, in how the issue of microtubule stability is discussed in the literature, and this can affect the design and interpretation of experiments as well as potential therapeutic regimens. Neuronal microtubules are considered to be more stable than microtubules in dividing cells. On average, this is true, but in addition to an abundant stable microtubule fraction in neurons, there is also an abundant labile microtubule fraction. Both are functionally important. Individual microtubules consist of domains that differ in their stability properties, and these domains can also differ markedly in their composition as well as how they interact with various microtubule-related proteins in the neuron. Myriad proteins and pathways have been discussed as potential contributors to microtubule stability in neurons. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell Division/physiology , Microtubules/metabolism , Neurons/metabolism , Animals , Humans , Neurons/cytology
10.
Article in English | MEDLINE | ID: mdl-22997535

ABSTRACT

Chronic treatment with levodopa (LD) in Parkinson's disease (PD) can cause drug induced dyskinesias. Mucuna pruriens endocarp powder (MPEP) contains several compounds including natural LD and has been reported to not cause drug-induced dyskinesias. We evaluated the effects of Mucuna pruriens to determine if its underlying mechanistic actions are exclusively due to LD. We first compared MPEP with and without carbidopa (CD), and LD+CD in hemiparkinsonian (HP) monkeys. Each treatment ameliorated parkinsonism. We then compared the neuronal firing properties of the substantia nigra reticulata (SNR) and subthalamic nucleus (STN) in HP monkeys with MPEP+CD and LD+CD to evaluate basal ganglia circuitry alterations. Both treatments decreased SNR firing rate compared to HP state. However, LD+CD treatments significantly increased SNR bursting firing patterns that were not seen with MPEP+CD treatments. No significant changes were seen in STN firing properties. We then evaluated the effects of a water extract of MPEP. Oral MPWE ameliorated parkinsonism without causing drug-induced dyskinesias. The distinctive neurophysiological findings in the basal ganglia and the ability to ameliorate parkinsonism without causing dyskinesias strongly suggest that Mucuna pruriens acts through a novel mechanism that is different from that of LD.

11.
Brain ; 134(Pt 11): 3276-89, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21911417

ABSTRACT

The electrophysiological correlates of parkinsonism in the basal ganglia have been well studied in patients with Parkinson's disease and animal models. Separately, striatal dopaminergic cell transplantation has shown promise in ameliorating parkinsonian motor symptoms. However, the effect of dopaminergic grafts on basal ganglia electrophysiology has not thoroughly been investigated. In this study, we transplanted murine foetal ventral mesencephalic cells into rats rendered hemiparkinsonian by 6-hydroxydopamine injection. Three months after transplantation, extracellular and local field potential recordings were taken under urethane anaesthesia from the substantia nigra pars reticulata and subthalamic nucleus along with cortical electroencephalograms and were compared to recordings from normal and hemiparkinsonian controls. Recordings from cortical slow-wave activity and global activation states were analysed separately. Rats with histologically confirmed xenografts showed behavioural improvement measured by counting apomorphine-induced rotations and with the extended body axis test. Firing rates in both nuclei were not significantly different between control and grafted groups. However, burst firing patterns in both nuclei in the slow-wave activity state were significantly reduced (P < 0.05) in rats with large surviving grafts, compared to hemiparkinsonian controls. The neuronal firing entropies and oscillations in both nuclei were restored to normal levels in the large-graft group. Electroencephalogram spike-triggered averages also showed normalization in the slow-wave activity state (P < 0.05). These results suggest that local continuous dopaminergic stimulation exerts a normalizing effect on the downstream parkinsonian basal ganglia firing patterns. This novel finding is relevant to future preclinical and clinical investigations of cell transplantation and the development of next-generation therapies for Parkinson's disease that ameliorate pathophysiological neural activity and provide optimal recovery of function.


Subject(s)
Corpus Striatum/transplantation , Neurons/physiology , Parkinson Disease, Secondary/physiopathology , Substantia Nigra/physiopathology , Subthalamic Nucleus/physiopathology , Animals , Behavior, Animal/physiology , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Dopamine/metabolism , Female , Motor Activity/physiology , Neurons/metabolism , Oxidopamine/toxicity , Parkinson Disease, Secondary/chemically induced , Rats , Rats, Sprague-Dawley , Substantia Nigra/metabolism , Subthalamic Nucleus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...