Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 164(9): 2122-2129, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37079851

ABSTRACT

ABSTRACT: In this study, we hypothesized that immersive virtual reality (VR) environments may reduce pain in patients with acute traumatic injuries, including traumatic brain injuries. We performed a randomized within-subject study in patients hospitalized with acute traumatic injuries, including traumatic brain injury with moderate pain (numeric pain score ≥3 of 10). We compared 3 conditions: (1) an immersive VR environment (VR Blu), (2) a content control with the identical environment delivered through nonimmersive tablet computer (Tablet Blu), and (3) a second control composed of donning VR headgear without content to control for placebo effects and sensory deprivation (VR Blank). We enrolled 60 patients, and 48 patients completed all 3 conditions. Objective and subjective data were analyzed using linear mixed-effects models. Controlling for demographics, baseline pain, and injury severity, we found differences by conditions in relieving pain (F 2,75.43 = 3.32, P = 0.042). VR Blu pain reduction was greater than Tablet Blu (-0.92 vs -0.16, P = 0.043), but VR Blu pain reduction was similar to VR Blank (-0.92 vs -1.24, P = 0.241). VR Blu was perceived as most effective by patients for pain reduction (F 2,66.84 = 16.28, P < 0.001), and changes in measures of parasympathetic activity including heart rate variability (F 2,55.511 = 7.87, P < 0.001) and pupillary maximum constriction velocity (F 2,61.41 = 3.50, 1-tailed P = 0.038) echoed these effects. There were no effects on opioid usage. These findings outlined a potential clinical benefit for mollifying pain related to traumatic injuries.


Subject(s)
Brain Injuries, Traumatic , Virtual Reality , Humans , Pain Management , Pain Measurement , Pain/etiology , Brain Injuries, Traumatic/complications
2.
Cureus ; 15(12): e50447, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38222125

ABSTRACT

The report highlights a rare instance of colonic volvulus due to a wandering spleen. Wandering spleen is characterized by the displacement of the spleen due to absent or weakened ligaments due to congenital factors or acquired factors such as pregnancy or prior surgery leading to ligament disruption. The 26-year-old patient presented with severe abdominal pain and distention, leading to a diagnosis of sigmoid volvulus secondary to the wandering spleen. This case underscores the importance of considering the wandering spleen in the differential diagnosis of acute abdomen, especially in patients with a surgical history of gastric sleeve resection. The article emphasizes the critical role of imaging in diagnosis and the necessity of timely surgical intervention to prevent severe complications. The case contributes to a broader understanding of the wandering spleen, particularly in post-surgical contexts, highlighting diagnostic challenges and management strategies.

3.
BMJ Open ; 11(11): e056030, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848527

ABSTRACT

INTRODUCTION: The annual mortality and national expense of the opioid crisis continue to rise in the USA (130 deaths/day, $50 billion/year). Opioid use disorder usually starts with the prescription of opioids for a medical condition. Its risk is associated with greater pain intensity and coping strategies characterised by pain catastrophising. Non-pharmacological analgesics in the hospital setting are critical to abate the opioid epidemic. One promising intervention is virtual reality (VR) therapy. It has performed well as a distraction tool and pain modifier during medical procedures; however, little is known about VR in the acute pain setting following traumatic injury. Furthermore, no studies have investigated VR in the setting of traumatic brain injury (TBI). This study aims to establish the safety and effect of VR therapy in the inpatient setting for acute traumatic injuries, including TBI. METHODS AND ANALYSIS: In this randomised within-subjects clinical study, immersive VR therapy will be compared with two controls in patients with traumatic injury, including TBI. Affective measures including pain catastrophising, trait anxiety and depression will be captured prior to beginning sessions. Before and after each session, we will capture pain intensity and unpleasantness, additional affective measures and physiological measures associated with pain response, such as heart rate and variability, pupillometry and respiratory rate. The primary outcome is the change in pain intensity of the VR session compared with controls. ETHICS AND DISSEMINATION: Dissemination of this protocol will allow researchers and funding bodies to stay abreast in their fields through exposure to research not otherwise widely publicised. Study protocols are compliant with federal regulation and University of Maryland Baltimore's Human Research Protections and Institutional Review Board (protocol number HP-00090603). Study results will be published on completion of enrolment and analysis, and deidentified data can be shared by request to the corresponding author. TRIAL REGISTRATION NUMBER: NCT04356963; Pre-results.


Subject(s)
Acute Pain , Virtual Reality , Analgesics, Opioid/therapeutic use , Humans , Pain Management , Pain Measurement , Randomized Controlled Trials as Topic
4.
Biotechnol Bioeng ; 115(5): 1253-1264, 2018 05.
Article in English | MEDLINE | ID: mdl-29384203

ABSTRACT

Cell-Free Protein Synthesis (CFPS) offers many advantages for the production of recombinant therapeutic proteins using the CHO cell-free system. However, many complex proteins are still difficult to express using this method. To investigate the current bottlenecks in cell-free glycoprotein production, we chose erythropoietin (40% glycosylated), an essential endogenous hormone which stimulates the development of red blood cells. Here, we report the production of recombinant erythropoietin (EPO) using CHO cell-free system. Using this method, EPO was expressed and purified with a twofold increase in yield when the cell-free reaction was supplemented with CHO microsomes. The protein was purified to near homogeneity using an ion-metal affinity column. We were able to analyze the expressed and purified products (glycosylated cell-free EPO runs at 25-28 kDa, and unglycosylated protein runs at 20 kDa on an SDS-PAGE), identifying the presence of glycan moieties by PNGase shift assay. The purified protein was predicted to have ∼2,300 IU in vitro activity. Additionally, we tested the presence and absence of sugars on the cell-free EPO using a lectin-based assay system. The results obtained in this study indicate that microsomes augmented in vitro production of the glycoprotein is useful for the rapid production of single doses of a therapeutic glycoprotein drug and to rapidly screen glycoprotein constructs in the development of these types of drugs. CFPS is useful for implementing a lectin-based method for rapid screening and detection of glycan moieties, which is a critical quality attribute in the industrial production of therapeutic glycoproteins.


Subject(s)
Biotechnology/methods , Cell-Free System , Erythropoietin/metabolism , Microsomes/metabolism , Recombinant Proteins/metabolism , Animals , CHO Cells , Chromatography, Affinity , Cricetulus , Electrophoresis, Polyacrylamide Gel , Erythropoietin/chemistry , Erythropoietin/genetics , Erythropoietin/isolation & purification , Gene Expression , Glycosylation , Humans , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
5.
Nat Biomed Eng ; 2(9): 675-686, 2018 09.
Article in English | MEDLINE | ID: mdl-31015674

ABSTRACT

Manufacturing technologies for biologics rely on large, centralized, good-manufacturing-practice (GMP) production facilities and on a cumbersome product-distribution network. Here, we report the development of an automated and portable medicines-on-demand device that enables consistent, small-scale GMP manufacturing of therapeutic-grade biologics on a timescale of hours. The device couples the in vitro translation of target proteins from ribosomal DNA, using extracts from reconstituted lyophilized Chinese hamster ovary cells, with the continuous purification of the proteins. We used the device to reproducibly manufacture His-tagged granulocyte-colony stimulating factor, erythropoietin, glucose-binding protein and diphtheria toxoid DT5. Medicines-on-demand technology may enable the rapid manufacturing of biologics at the point of care.


Subject(s)
Biological Products/chemistry , Proteins/chemistry , Animals , CHO Cells , Cell Line , Cricetulus , DNA, Ribosomal/chemistry , Erythropoietin/chemistry , Granulocyte Colony-Stimulating Factor/chemistry , Humans , Point-of-Care Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...