Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 158: 104969, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34044047

ABSTRACT

Burkholderia pseudomallei is the etiological agent of melioidosis, which is an emerging infectious disease endemic to many tropical regions. Autophagy is an intrinsic cellular process that degrades cytoplasmic components and plays an important role in protecting the host against pathogens. Like many intracellular pathogens, B. pseudomallei can evade the autophagy-dependent cellular clearance. However, the underlying mechanism remains unclear. In this study, we applied a combination of multiple assays to monitor autophagy processes and found that B. pseudomallei induced an incomplete autophagic flux and eliminate autophagy clearance in macrophages by blocking autophagosome-lysosome fusion. Based on a high-throughput microarray screening, we found that LIPA (lysosomal acid LIPAse A) was downregulated during B. pseudomallei infection. MiR-146a was then identified to be specifically upregulated upon infection with B. pseudomallei and further regulated LIPA expression by interacting with 3'UTR of LIPA. Furthermore, overexpression of miR-146a contributed to the defect of autophagic flux caused by B. pseudomallei and was beneficial for the survival of B. pseudomallei in macrophages. Therefore, our findings suggest that miR-146a inhibits autophagy via posttranscriptional suppression of LIPA expression to maintain B. pseudomallei survival in macrophages.


Subject(s)
Burkholderia pseudomallei , Macrophages/microbiology , Melioidosis , MicroRNAs , Sterol Esterase , Animals , Autophagy , Burkholderia pseudomallei/genetics , HEK293 Cells , Humans , Mice , MicroRNAs/genetics , RAW 264.7 Cells
2.
PLoS Pathog ; 15(6): e1007879, 2019 06.
Article in English | MEDLINE | ID: mdl-31199852

ABSTRACT

Burkholderia pseudomallei is a gram-negative, facultative intracellular bacterium, which causes a disease known as melioidosis. Professional phagocytes represent a crucial first line of innate defense against invading pathogens. Uptake of pathogens by these cells involves the formation of a phagosome that matures by fusing with early and late endocytic vesicles, resulting in killing of ingested microbes. Host Rab GTPases are central regulators of vesicular trafficking following pathogen phagocytosis. However, it is unclear how Rab GTPases interact with B. pseudomallei to regulate the transport and maturation of bacterial-containing phagosomes. Here, we showed that the host Rab32 plays an important role in mediating antimicrobial activity by promoting phagosome maturation at an early phase of infection with B. pseudomallei. And we demonstrated that the expression level of Rab32 is increased through the downregulation of the synthesis of miR-30b/30c in B. pseudomallei infected macrophages. Subsequently, we showed that B. pseudomallei resides temporarily in Rab32-positive compartments with late endocytic features. And Rab32 enhances phagosome acidification and promotes the fusion of B. pseudomallei-containing phagosomes with lysosomes to activate cathepsin D, resulting in restricted intracellular growth of B. pseudomallei. Additionally, Rab32 mediates phagosome maturation depending on its guanosine triphosphate/guanosine diphosphate (GTP/GDP) binding state. Finally, we report the previously unrecognized role of miR-30b/30c in regulating B. pseudomallei-containing phagosome maturation by targeting Rab32 in macrophages. Altogether, we provide a novel insight into the host immune-regulated cellular pathway against B. pseudomallei infection is partially dependent on Rab32 trafficking pathway, which regulates phagosome maturation and enhances the killing of this bacterium in macrophages.


Subject(s)
Burkholderia pseudomallei/immunology , Melioidosis/immunology , MicroRNAs/immunology , Phagosomes/immunology , rab GTP-Binding Proteins/immunology , Animals , Burkholderia pseudomallei/pathogenicity , Melioidosis/pathology , Mice , Microbial Viability/immunology , Phagosomes/microbiology , Phagosomes/pathology , RAW 264.7 Cells
3.
Behav Brain Res ; 320: 12-20, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27880890

ABSTRACT

Resilience is an active coping response to stress, which plays a very important role in major depressive disorder study. The molecular mechanisms underlying such resilience are poorly understood. Peripheral blood mononuclear cells (PBMCs) were promising objects in unveiling the underlying pathogenesis of resilience. Hereby we carried out successive study on PBMCs metabolomics in resilient rats of chronic unpredictable mild stress (CUMS) model. A gas chromatography-mass spectrometry (GC-MS) metabolomic approach coupled with principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) was used to detect differential metabolites in PBMCs of resilient rats. Ingenuity Pathways Analysis (IPA) was applied for pathway analysis. A set of differential metabolites including Malic acid, Ornithine, l-Lysine, Stigmasterol, Oleic acid, γ-Tocopherol, Adenosine and N-acetyl-d-glucosamine were significantly altered in resilient rats, meanwhile promoting antidepressant research. As revealed by IPA that aberrant energy metabolism, HIFα signaling, neurotransmitter, O-GlcNAcylation and cAMP signaling cascade in peripheral might be evolved in the pathogenesis of coping mechanism. The GC-MS based metabolomics may contribute to better understanding of resilience, as well as shedding light on antidepressant discovery.


Subject(s)
Leukocytes, Mononuclear/metabolism , Metabolome , Resilience, Psychological , Stress, Psychological/pathology , Stress, Psychological/psychology , Animals , Antidepressive Agents , Body Weight/physiology , Citric Acid Cycle/physiology , Cyclic AMP/metabolism , Discriminant Analysis , Disease Models, Animal , Food Preferences/psychology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Metabolomics , Principal Component Analysis , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
4.
Clin Chim Acta ; 451(Pt B): 142-8, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26394130

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a debilitating psychiatric mood disorder. However, no objective laboratory-based test is yet available to aid in the diagnosis of this disorder. METHODS: In order to identify urinary protein biomarker candidates for MDD, the differential proteomic analysis of urine samples from first-episode drug-naïve MDD subjects and healthy controls (HC) was carried out by using two-dimensional gel electrophoresis separation followed by MALDI-TOF/TOF-MS/MS identification. Then, the differential expression levels of some candidate proteins were further validated by immunoblot analysis. RESULTS: Through mass spectrometry and database searching, a total of 27 differential proteins were identified, primarily including enzymes, plasma proteins, serpins, and adhesion molecules. Five proteins were selected for subsequent validation by Western blotting. One arginine recycling enzyme - argininosuccinate synthase (ASS1) - was further confirmed to be significantly downregulated in the urine of 30 depressed subjects while remaining unchanged in the plasma. Importantly, receiver-operator curve analyses revealed that ASS1 displayed strong efficacy in distinguishing MDD subjects from HC. CONCLUSION: The present study provides a range of urinary protein biomarker candidates for MDD, and further demonstrates that ASS1 has a potential for clinical diagnosis of this disorder.


Subject(s)
Argininosuccinate Synthase/urine , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/urine , Adolescent , Adult , Aged , Argininosuccinate Synthase/metabolism , Biomarkers/urine , Blotting, Western , Depressive Disorder, Major/enzymology , Female , Humans , Immunoblotting , Male , Mass Spectrometry , Middle Aged , Young Adult
5.
OMICS ; 19(7): 383-92, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26134254

ABSTRACT

Major depressive disorder (MDD) is a highly prevalent, debilitating mental illness of importance for global health. However, its molecular pathophysiology remains poorly understood. Combined proteomics and metabolomics approaches should provide a comprehensive understanding of MDD's etiology. The present study reports novel "-omics" insights from a rodent model of MDD. Cerebellar samples from chronic mild stressed (CMS)-treated depressed rats and controls were compared with a focus on the differentially expressed proteins and metabolites using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and gas chromotography/mass spectrometry (GC-MS) metabolomics techniques, respectively. The combined analyses found significant alterations associated with cerebellar energy metabolism, as indicated by (1) abnormal amino acid metabolism accompanied by corresponding metabolic enzymatic alterations and disturbed protein turnover, (2) increased glycolytic and tricarboxylic acid (TCA) cycle enzyme levels paralleled by changes in the concentrations of associated metabolites, and (3) perturbation of ATP biosynthesis through adenosine accompanied by perturbation of the mitochondrial respiratory chain. To the best of our knowledge, this study is the first to integrate proteomics and metabolomics analyses to examine the pathophysiological mechanism(s) underlying MDD in a CMS rodent model of depression. These results can offer important insights into the pathogenesis of MDD.


Subject(s)
Depressive Disorder, Major/metabolism , Energy Metabolism , Metabolomics , Proteomics , Amino Acids/metabolism , Animals , Carbohydrate Metabolism , Cerebellum/metabolism , Citric Acid Cycle , Depressive Disorder, Major/physiopathology , Disease Models, Animal , Gas Chromatography-Mass Spectrometry , Glycolysis , Male , Models, Biological , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...