Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 293(4): F994-F1006, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17581926

ABSTRACT

Previous studies (Vaidya VS, Shankar K, Lock EA, Bucci TJ, Mehendale HM. Toxicol Sci 74: 215-227, 2003; Korrapati MC, Lock EA, Mehendale HM. Am J Physiol Renal Physiol 289: F175-F185, 2005; Korrapati MC, Chilakapati J, Lock EA, Latendresse JR, Warbritton A, Mehendale HM. Am J Physiol Renal Physiol 291: F439-F455, 2006) demonstrated that renal repair stimulated by a low dose of S-(1,2-dichlorovinyl)l-cysteine (DCVC; 15 mg/kg i.p.) 72 h before administration of a normally lethal dose (75 mg/kg i.p.) protects mice from acute renal failure (ARF) and death (autoprotection). The present study identified the proteins indicative of DCVC-induced ARF and autoprotection in male Swiss Webster mice. Renal dysfunction and injury were assessed by plasma creatinine and histopathology, respectively. Whole-kidney homogenates were run on two-dimensional gel electrophoresis gels, and the expression of 18 common proteins was maximally changed (> or =10-fold) in all the treatment groups and they were conclusively identified by liquid chromatography tandem mass spectrometry. These proteins were mildly downregulated after low dose alone and in autoprotected mice in contrast to severe downregulation with high dose alone. Glucose-regulated protein 75 and proteasome alpha-subunit type 1 were further investigated by immunohistochemistry for their localization in the kidneys of all the groups. These proteins were substantially higher in the proximal convoluted tubular epithelial cells in the low-dose and autoprotected groups compared with high-dose alone group. Proteins involved in energetics were downregulated in all the three groups of mice, leading to a compromise in cellular energy. However, energy is recovered completely in low-dose and autoprotected mice. This study provides the first report on proteomics of DCVC-induced ARF and autoprotection in mice and reflects the application of proteomics in mechanistic studies as well as biomarker development in a variety of toxicological paradigms.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Cysteine/analogs & derivatives , Kidney/metabolism , Proteomics , Acute Kidney Injury/mortality , Animals , Apoptosis Regulatory Proteins , Carrier Proteins/metabolism , Coenzyme A Ligases/metabolism , Creatinine/blood , Cysteine/adverse effects , Cysteine/pharmacology , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/physiology , Fatty Acid Transport Proteins/metabolism , Free Radical Scavengers/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Hemopexin/metabolism , Kidney/drug effects , Kidney/pathology , Male , Membrane Proteins/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...