Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 187(1): 4081, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25384370

ABSTRACT

There are continued concerns on unscientific usage of chemical fertilizers and pesticides, particularly in many developing countries leading to adverse consequences for soil biological quality and agricultural sustainability. In farmers' fields in tropical Vertisols of peninsular India, "high" fertilizer and pesticide usage at about 2.3 times the recommended rates in black gram (Vigna mungo) did not have a deleterious effect on the abundance of culturable microorganisms, associative nitrogen fixers, nitrifiers, and 16S rRNA gene diversity compared to normal rates. However, "very high" application at about five times the fertilizers and 1.5 times pesticides in chilies (Capsicum annuum) adversely affected the populations of fungi, actinomycetes, and ammonifiers, along with a drastic change in the eubacterial community profile and diversity over normal rates. Actinobacteria were dominant in black gram normal (BG1) (47%), black gram high (BG2) (36%), and chili normal (CH1) (30%) and were least in chili very high (CH2) (14%). Geodermatophilus formed 20% of Actinobacteria in BG1 but disappeared in BG2, CH1, and CH2. Asticcacaulis dominated at "very high" input site (CH2). Diversity of nitrogen fixers was completely altered; Dechloromonas and Anaeromyxobacter were absent in BG1 but proliferated well in BG2. There was reduction in rhizobial nifH sequences in BG2 by 46%. Phylogenetic differences characterized by UniFrac and principal coordinate analysis showed that BG2 and CH2 clustered together depicting a common pattern of genetic shift, while BG1 and CH1 fell at different axis. Overall, there were adverse consequences of "very high" fertilizer and pesticide usage on soil microbial diversity and function in tropical Vertisols.


Subject(s)
Agriculture/methods , Fertilizers/analysis , Microbial Consortia , Soil Microbiology , Soil/chemistry , Actinobacteria/classification , Bacteria/classification , Capsicum/growth & development , Ecology , Environmental Monitoring , Fungi/classification , India , Nitrogen/analysis , Pesticides/analysis , Pesticides/toxicity , Phylogeny , RNA, Ribosomal, 16S/genetics
2.
Int J Syst Evol Microbiol ; 65(Pt 1): 129-134, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25298380

ABSTRACT

Strain RK1(T), a Gram-stain-negative, non-spore-forming, rod-shaped, non-motile bacterium was isolated from a hexachlorocyclohexane (HCH) dumpsite, Lucknow, India. 16S rRNA gene sequence analysis revealed that strain RK1(T) belongs to the family Sphingobacteriaceae and showed highest sequence similarity to Parapedobacter koreensis Jip14(T) (95.63%). The major cellular fatty acids of strain RK1(T) were iso-C15:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), iso-C17:0 3-OH, summed feature 9 (10-methyl C16:0 and/or iso-C17:1ω9c), iso-C15:0 3-OH and C16 : 0. The major respiratory pigment and polyamine of RK1(T) were menaquinone (MK-7) and homospermidine, respectively. The main polar lipids were phosphatidylethanolamine and sphingolipid. The G+C content of the DNA was 44.5 mol%. The results of physiological and biochemical tests and 16S rRNA sequence analysis clearly demonstrated that strain RK1(T) represents a novel species of the genus Parapedobacter, for which the name Parapedobacter indicus sp. nov. is proposed. The type strain is RK1(T) ( = DSM 28470(T) =MCC 2546(T)).


Subject(s)
Bacteroidetes/classification , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Hexachlorocyclohexane/analysis , India , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Pollutants/analysis , Spermidine/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
3.
Indian J Microbiol ; 54(2): 190-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25320421

ABSTRACT

Soybean is extensively cultivated worldwide and is the largest source of biologically fixed nitrogen among legumes. It is nodulated by both slow and fast growing rhizobia. Indigenous soybean rhizobia in Vertisols of central India were assessed for utilization of 35 carbon sources and intrinsic resistance to 19 antibiotics. There was greater utilization of trehalose and raffinose by fast growers (87 and 73 % by fast vs. 35 and 30 % by slow growers); but slow growers had higher ability to utilize glucosamine (75 % by slow vs. 33 % by fast growers). A larger proportion of slow growers were resistant to vancomycin, polymyxin-B and rifampicin (70, 65 and 55 %) compared to fast growers (13, 7 and 7 % each). Among the two 16S rRNA sequence types in the slow growers, those belonging to Bradyrhizobium spp. utilized glucosamine while those belonging to Rhizobium radiobacter did not. All the fast growers had 16S rRNA homology to R. radiobacter and majority could not utilize glucosamine. It is suggested that during initial isolations and screening of rhizobia in strain selection programmes, using carbon sources like glucosamine and antibiotics like vancomycin, polymyxin-B and rifampicin in the media may provide a simple way of distinguishing Bradyrhizobium strains from R. radiobacter among the slow growers.

4.
Indian J Microbiol ; 54(4): 413-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25320439

ABSTRACT

Indigenous formulations based on cow dung fermentation are commonly used in organic farming. Three biodynamic preparations viz., Panchagavya (PG), BD500 and 'Cow pat pit' (CPP) showed high counts of lactobacilli (10(9) ml(-1)) and yeasts (10(4) ml(-1)). Actinomycetes were present only in CPP (10(4) ml(-1)) and absent in the other two. Seven bacterial isolates from these ferments were identified by a polyphasic approach: Bacillus safensis (PG1), Bacillus cereus (PG2, PG4 PG5), Bacillus subtilis (BD2) Lysinibacillus xylanilyticus (BD3) and Bacillus licheniformis (CPP1). This is the first report of L. xylanilyticus and B. licheniformis in biodynamic preparations. Only three carbon sources-dextrose, sucrose and trehalose out of 21 tested were utilized by all the bacteria. None could utilize arabinose, dulcitol, galactose, inositol, inulin, melibiose, raffinose, rhamnose and sorbitol. All the strains produced indole acetic acid (1.8-3.7 µg ml(-1) culture filtrate) and ammonia. None could fix nitrogen; but all except B. safensis and B. licheniformis could solubilize phosphorous from insoluble tri-calcium phosphate. All the strains except L. xylaniliticus exhibited antagonism to the plant pathogen Rhizoctonia bataticola whereas none could inhibit Sclerotium rolfsi. In green house experiment in soil microcosms, bacterial inoculation significantly promoted growth of maize; plant dry weight increased by ~21 % due to inoculation with B. cereus (PG2). Results provide a basis for understanding the beneficial effects of biodynamic preparations and industrial deployment of the strains.

5.
Genome Announc ; 2(4)2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25103767

ABSTRACT

Sphingobium lucknowense F2(T), isolated from the hexachlorocylcohexane (HCH) dumpsite located in Ummari village, Lucknow, India, rapidly degrades HCH isomers. Here we report the draft genome of strain F2 (4.4 Mbp), consisting of 4,910 protein coding genes with an average G+C content of 64.3%.

6.
Ann Bot ; 89(5): 563-70, 2002 May.
Article in English | MEDLINE | ID: mdl-12099530

ABSTRACT

Production of grain legumes is severely reduced in salt-affected soils because their ability to form and maintain nitrogen-fixing nodules is impaired by both salinity and sodicity (alkalinity). Genotypes of chickpea, Cicer arietinum, with high nodulation capacity under stress were identified by field screening in a sodic soil in India and subsequently evaluated quantitatively for nitrogen fixation in a glasshouse study in a saline but neutral soil in the UK. In the field, pH 8.9 was the critical upper limit for most genotypes studied but genotypes with high nodulation outperformed all others at pH 9.0-9.2. The threshold limit of soil salinity for shoot growth was at ECe 3 dS m(-1), except for the high-nodulation selection for which it was ECe 6. Nodulation was reduced in all genotypes at salinities above 3 dS m(-1) but to a lesser extent in the high-nodulation selection, which proved inherently superior under both non-saline and stress conditions. Nitrogen fixation was also much more tolerant of salinity in this selection than in the other genotypes studied. The results show that chickpea genotypes tolerant of salt-affected soil have better nodulation and support higher rates of symbiotic nitrogen fixation than sensitive genotypes.


Subject(s)
Cicer/growth & development , Nitrogen Fixation/drug effects , Sodium Chloride/pharmacology , Sodium/pharmacology , Algorithms , Anions/metabolism , Biomass , Calcium/metabolism , Cations/metabolism , Chlorine/metabolism , Cicer/drug effects , Magnesium/metabolism , Nitrates/metabolism , Nitrogen Isotopes , Phosphates/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Potassium/metabolism , Sodium/metabolism , Sulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...