Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928189

ABSTRACT

Plants photoreceptors perceive changes in light quality and intensity and thereby regulate plant vegetative growth and reproductive development. By screening a γ irradiation-induced mutant library of the soybean (Glycine max) cultivar "Dongsheng 7", we identified Gmeny, a mutant with elongated nodes, yellowed leaves, decreased chlorophyll contents, altered photosynthetic performance, and early maturation. An analysis of bulked DNA and RNA data sampled from a population segregating for Gmeny, using the BVF-IGV pipeline established in our laboratory, identified a 10 bp deletion in the first exon of the candidate gene Glyma.02G304700. The causative mutation was verified by a variation analysis of over 500 genes in the candidate gene region and an association analysis, performed using two populations segregating for Gmeny. Glyma.02G304700 (GmHY2a) is a homolog of AtHY2a in Arabidopsis thaliana, which encodes a PΦB synthase involved in the biosynthesis of phytochrome. A transcriptome analysis of Gmeny using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed changes in multiple functional pathways, including photosynthesis, gibberellic acid (GA) signaling, and flowering time, which may explain the observed mutant phenotypes. Further studies on the function of GmHY2a and its homologs will help us to understand its profound regulatory effects on photosynthesis, photomorphogenesis, and flowering time.


Subject(s)
Exons , Gene Expression Regulation, Plant , Glycine max , Hypocotyl , Photosynthesis , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Photosynthesis/genetics , Exons/genetics , Hypocotyl/genetics , Hypocotyl/growth & development , Sequence Deletion , Plant Proteins/genetics , Plant Proteins/metabolism , Gibberellins/metabolism , Gene Expression Profiling , Phenotype
2.
Ying Yong Sheng Tai Xue Bao ; 32(5): 1768-1776, 2021 May.
Article in Chinese | MEDLINE | ID: mdl-34042372

ABSTRACT

We examined the effects of phosphorus (P) levels on photosynthetic and P/Fe traits of soybean under the stress of low Fe and their genotypic differences, to provide a theoretical basis for rational application of P and Fe fertilizer. Six P-efficient and six P-inefficient soybean varieties screened in the early stage were used as experimental materials. Four treatments of P:Fe ratio were set, including 0:30, 30:30, 150:30 and 300:30 (µmol·L-1). We measured chlorophyll fluorescence traits and P-Fe utilization efficiency in soybean. A stepwise regression equation was established with seed weight per plant. Pathway analysis was performed, with the response of P-efficient and P-inefficient soybean genotypes to different P:Fe treatments being comprehensively evaluated by factor scores. The results showed significant main and interactive effects of genotype and P:Fe on the relative electron transfer rate of photosystem Ⅱ (ETR) at beginning of flowering stage (R1), the proportion of the energy absorbed by photosystem Ⅱ dissipated into heat (NPQ) at R1 stage, and proportion of energy absorbed by photosystem Ⅱ devoted to the photochemical reaction (qL) at R1 stage. Results of canonical correlation analysis showed a negative correlation between P utilization efficiency of seed at full maturity stage (R8) and photosynthetic rate at R1 stage of P-efficient genotypes. Seed Fe utilization efficiency of P-inefficient genotypes at R8 stage was positively correlated with NPQ at R1 stage, but negatively correlated with qL at R1 stage. The actual photochemical efficiency of PSⅡ (ΦPSⅡ) at R1 stage was negatively correlated with P-efficient genotypes, but positively correlated with P-inefficient genotypes, which indicated that ΦPSⅡ at R1 stage was an important indicator for identifying soybean genotypes with different P efficiency under stress of low Fe. The comprehensive performance of P-efficient soybean genotypes decreased first and then increased with P level, while P-inefficient soybean genotypes increased first and then decreased. The inflection point of both genotypes appeared in P:Fe of 30:30. Thus, P:Fe ratio of 30:30 could be used as a threshold to identify soybean genotypes with different P efficiency under stress of low Fe. In conclusion, P fertilizer application should be equal to or greater than 1:1 (P:Fe) when planting P-efficient soybean genotypes in low Fe area, while P fertilizer application should not exceed 1:1 (P:Fe) when planting P-inefficient soybean genotypes.


Subject(s)
Glycine max , Photosynthesis , Chlorophyll , Phenotype , Phosphorus , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Glycine max/genetics , Glycine max/metabolism
3.
Front Microbiol ; 12: 638326, 2021.
Article in English | MEDLINE | ID: mdl-33897643

ABSTRACT

Corn-soybean rotation and fertilization are common practices improving soil fertility and crop yield. Their effects on bacterial community have been extensively studied, yet, few comprehensive studies about the microbial activity, bacterial community and functional groups in a long-term continuous soybean cropping system after corn insertion and fertilization. The effects of corn insertions (Sm: no corn insertion, CS: 3 cycles of corn-soybean rotations and CCS: 2 cycles of corn-corn-soybean rotations) with two fertilization regimes (No fertilization and NPK) on bacterial community and microbial activity were investigated in a long-term field experiment. The bacterial communities among treatments were evaluated using high-throughput sequencing then bacterial functions were predicted based on the FaProTax database. Soil respiration and extracellular enzyme activities were used to assess soil microbial activity. Soil bacterial community structure was significantly altered by corn insertions (p < 0.01) and fertilization (p < 0.01), whereas bacterial functional structure was only affected by corn insertion (p < 0.01). The activities of four enzymes (invertase, ß-glucosidase, ß-xylosidase, and ß-D-1,4-cellobiohydrolase) involved in soil C cycling were enhanced by NPK fertilizer, and were also enhanced by corn insertions except for the invertase and ß-xylosidase under NPK fertilization. NPK fertilizer significantly improved soil microbial activity except for soil metabolic quotient (qCO2) and the microbial quotient under corn insertions. Corn insertions also significantly improved soil microbial activity except for the ratio of soil induced respiration (SIR) to basal respiration (BR) under fertilization and the qCO2 was decreased by corn insertions. These activity parameters were highly correlated with the soil functional capability of aromatic compound degradation, which was the main predictors of bacterial functional structure. In general, the combination of soil microbial activity, bacterial community and corresponding functional analysis provided comprehensive insights into compositional and functional adaptations to corn insertions and fertilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...