Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Acta Obstet Gynecol Scand ; 96(6): 707-714, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28437003

ABSTRACT

Adenomyosis is a disorder of uterus in which endometrial glands and stroma are present within the uterine musculature. The main clinical manifestations are dysmenorrhea and menorrhagia. Adenomyosis has a great impact on both the quality of life and fertility of women. The treatment of adenomyosis remains an immense challenge. Relevant articles were searched through MEDLINE and PubMed between 2000 and March 2017. The search terms of adenomyosis, magnetic resonance imaging (MRI) features of adenomyosis, high intensity focused ultrasound (HIFU), ultrasound-guided HIFU and MRgFUS were used. There were no language restrictions. HIFU is a non-invasive local thermal ablation technique which has been used in the treatment of both focal and diffuse adenomyosis. Several case studies have demonstrated that HIFU presents low rate of minor and/or major complications and, at the same time, a long symptom-relief period. Multiple factors such as the enhancement type of the adenomyotic lesion, volume of the adenomyotic lesions, number of hyperintense foci on T2WI, location of the uterus, location of adenomyotic lesions, thickness of the abdominal wall and distance from the skin to the adenomyotic lesions contribute to the efficacy of HIFU. Consequently, based on these contributing factors, specific and strict selection criteria have been used to achieve higher efficacy. Thus, patients with pelvic endometriosis, adhesions between the bowel and the uterus, or an abdominal surgical scar wider than 10 mm, are not suitable for HIFU treatment. Moreover, HIFU-treated patients with adenomyosis, who wished to conceive, showed high conception and live birth rates. HIFU is a new and promising treatment option for patients with adenomyosis, but its efficacy, safety, cost-effectiveness and fertility outcome must be evaluated by randomized controlled trials.


Subject(s)
Adenomyosis/surgery , Dysmenorrhea/surgery , High-Intensity Focused Ultrasound Ablation/methods , Infertility, Female/prevention & control , Menorrhagia/surgery , Ultrasonography, Interventional/methods , Adenomyosis/complications , Dysmenorrhea/etiology , Female , Humans , Infertility, Female/etiology , Magnetic Resonance Imaging/methods , Menorrhagia/etiology
2.
Stem Cell Reports ; 8(4): 1086-1100, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28410642

ABSTRACT

Large-scale collections of induced pluripotent stem cells (iPSCs) could serve as powerful model systems for examining how genetic variation affects biology and disease. Here we describe the iPSCORE resource: a collection of systematically derived and characterized iPSC lines from 222 ethnically diverse individuals that allows for both familial and association-based genetic studies. iPSCORE lines are pluripotent with high genomic integrity (no or low numbers of somatic copy-number variants) as determined using high-throughput RNA-sequencing and genotyping arrays, respectively. Using iPSCs from a family of individuals, we show that iPSC-derived cardiomyocytes demonstrate gene expression patterns that cluster by genetic background, and can be used to examine variants associated with physiological and disease phenotypes. The iPSCORE collection contains representative individuals for risk and non-risk alleles for 95% of SNPs associated with human phenotypes through genome-wide association studies. Our study demonstrates the utility of iPSCORE for examining how genetic variants influence molecular and physiological traits in iPSCs and derived cell lines.


Subject(s)
Arrhythmias, Cardiac/genetics , Databases, Factual , Genetic Association Studies , Genetic Variation , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac/ethnology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cell Differentiation , Cell Line , Cellular Reprogramming/genetics , Genotype , High-Throughput Nucleotide Sequencing , Humans , Induced Pluripotent Stem Cells/cytology , Multigene Family , Myocytes, Cardiac/cytology , Oligonucleotide Array Sequence Analysis , Phenotype , Polymorphism, Single Nucleotide , Racial Groups
3.
Hum Mol Genet ; 26(1): 233-242, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28011710

ABSTRACT

Chromogranins are pro-hormone secretory proteins released from neuroendocrine cells, with effects on control of blood pressure. We conducted a genome-wide association study for plasma catestatin, the catecholamine release inhibitory peptide derived from chromogranin A (CHGA), and other CHGA- or chromogranin B (CHGB)-related peptides, in 545 US and 1252 Australian subjects. This identified loci on chromosomes 4q35 and 5q34 affecting catestatin concentration (P = 3.40 × 10-30 for rs4253311 and 1.85 × 10-19 for rs2731672, respectively). Genes in these regions include the proteolytic enzymes kallikrein (KLKB1) and Factor XII (F12). In chromaffin cells, CHGA and KLKB1 proteins co-localized in catecholamine storage granules. In vitro, kallikrein cleaved recombinant human CHGA to catestatin, verified by mass spectrometry. The peptide identified from this digestion (CHGA360-373) selectively inhibited nicotinic cholinergic stimulated catecholamine release from chromaffin cells. A proteolytic cascade involving kallikrein and Factor XII cleaves chromogranins to active compounds both in vivo and in vitro.


Subject(s)
Biomarkers/metabolism , Catecholamines/metabolism , Chromaffin Cells/metabolism , Chromogranin A/blood , Genetic Loci/genetics , Hypertension/genetics , Peptide Fragments/blood , Adolescent , Adrenal Glands/metabolism , Adult , Aged , Animals , Australia , Biomarkers/analysis , Cells, Cultured , Factor XII/genetics , Factor XII/metabolism , Female , Genome-Wide Association Study , Humans , Hypertension/blood , Kallikreins/genetics , Kallikreins/metabolism , Male , Mice , Middle Aged , Rats , United States , Young Adult
4.
BMC Med Genet ; 17: 21, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26969407

ABSTRACT

BACKGROUND: Plasma coagulation Factor XIIa (Hageman factor; encoded by F12) and kallikrein (KAL or Fletcher factor; encoded by KLKB1) are proteases of the kallikerin-kinin system involved in converting the inactive circulating prorenin to renin. Renin is a key enzyme in the formation of angiotensin II, which regulates blood pressure, fluid and electrolyte balance and is a biomarker for cardiovascular, metabolic and renal function. The renin-angiotensin system is implicated in extinction learning in posttraumatic stress disorder. METHODS & RESULTS: Active plasma renin was measured from two independent cohorts- civilian twins and siblings, as well as U.S. Marines, for a total of 1,180 subjects. Genotyping these subjects revealed that the carriers of the minor alleles at the two loci- F12 and KLKB1 had a significant association with reduced levels of active plasma renin. Meta-analyses confirmed the association across cohorts. In vitro studies verified digestion of human recombinant pro-renin by kallikrein (KAL) to generate active renin. Subsequently, the active renin was able to digest the synthetic substrate angiotensinogen to angiotensin-I. Examination of mouse juxtaglomerular cell line and mouse kidney sections showed co-localization of KAL with renin. Expression of either REN or KLKB1 was regulated in cell line and rodent models of hypertension in response to oxidative stress, interleukin or arterial blood pressure changes. CONCLUSIONS: The functional variants of KLKB1 (rs3733402) and F12 (rs1801020) disrupted the cascade of enzymatic events, resulting in diminished formation of active renin. Using genetic, cellular and molecular approaches we found that conversion of zymogen prorenin to renin was influenced by these polymorphisms. The study suggests that the variant version of protease factor XIIa due to the amino acid substitution had reduced ability to activate prekallikrein to KAL. As a result KAL has reduced efficacy in converting prorenin to renin and this step of the pathway leading to activation of renin affords a potential therapeutic target.


Subject(s)
Factor XIIa/genetics , Kallikreins/genetics , Polymorphism, Single Nucleotide , Renin-Angiotensin System/genetics , Renin/blood , Adolescent , Adult , Aged , Alleles , Angiotensin I/blood , Angiotensinogen/blood , Animals , Blood Pressure , Cell Cycle Proteins , Cell Line , Gene Expression Regulation , Genetic Loci , Genome-Wide Association Study , Genotyping Techniques , Humans , Hypertension/genetics , Juxtaglomerular Apparatus/cytology , Kallikreins/blood , Male , Mice , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Prekallikrein/metabolism , Renin/genetics , Serine Endopeptidases/metabolism , Transferases , Young Adult
5.
Arterioscler Thromb Vasc Biol ; 35(7): 1704-11, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25953646

ABSTRACT

OBJECTIVE: To determine whether biomarkers of oxidized lipoproteins are genetically determined. Lipoprotein(a) (Lp[a]) is a heritable risk factor and carrier of oxidized phospholipids (OxPL). APPROACH AND RESULTS: We measured oxidized phospholipids on apolipoprotein B-containing lipoproteins (OxPL-apoB), Lp(a), IgG, and IgM autoantibodies to malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes in 386 monozygotic and dizygotic twins to estimate trait heritability (h(2)) and determine specific genetic effects among traits. A genome-wide linkage study followed by genetic association was performed. The h(2) (scale: 0-1) for Lp(a) was 0.91±0.01 and for OxPL-apoB 0.87±0.02, which were higher than physiological, inflammatory, or lipid traits. h(2) of IgM malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes were 0.69±0.04, 0.67±0.05, and 0.80±0.03, respectively, and for IgG malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes 0.62±0.05, 0.52±0.06, and 0.53±0.06, respectively. There was an inverse correlation between the major apo(a) isoform and OxPL-apoB (R=-0.49; P<0.001) and Lp(a) (R=-0.48; P<0.001) and OxPL-apoB was modestly correlated with Lp(a) (ρ=0.57; P<0.0001). The correlation in major apo(a) isoform size was concordant (R=1.0; P<0.001) among monozygotic twins but not dizygotic twins (R=0.40; P=0.055). Lp(a) and OxPL-apoB shared genetic codetermination (genetic covariance, ρG=0.774±0.032; P=1.09×10(-38)), although not environmental determination (environmental covariance, ρE=0.081±0.15; P=0.15). In contrast, Lp(a) shared environmental but not genetic codetermination with autoantibodies to malondialdehyde-modified low-density lipoprotein and copper oxidized low-density lipoprotein, and apoB-immune complexes. Sib-pair genetic linkage of the Lp(a) trait revealed that single nucleotide polymorphism rs10455872 was significantly associated with OxPL-apoB after adjusting for Lp(a). CONCLUSIONS: OxPL-apoB and other biomarkers of oxidized lipoproteins are highly heritable cardiovascular risk factors that suggest novel genetic origins of atherothrombosis.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/genetics , Lipoproteins/blood , Adolescent , Adult , Aged , Aged, 80 and over , Antigen-Antibody Complex/blood , Apolipoproteins B/blood , Apolipoproteins B/immunology , Autoantibodies/blood , Biomarkers/blood , Cholesterol, LDL/blood , Cholesterol, LDL/immunology , Female , Humans , Male , Malondialdehyde/blood , Middle Aged , Oxidation-Reduction , Peptide Fragments/blood , Peptide Fragments/immunology , Phospholipids/blood , Risk Factors , Young Adult
6.
J Am Coll Cardiol ; 63(15): 1542-55, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24509276

ABSTRACT

OBJECTIVES: This study coupled 2 strategies-trait extremes and genome-wide pooling-to discover a novel blood pressure (BP) locus that encodes a previously uncharacterized thiamine transporter. BACKGROUND: Hypertension is a heritable trait that remains the most potent and widespread cardiovascular risk factor, although details of its genetic determination are poorly understood. METHODS: Representative genomic deoxyribonucleic acid (DNA) pools were created from male and female subjects in the highest- and lowest-fifth percentiles of BP in a primary care population of >50,000 patients. The peak associated single-nucleotide polymorphisms were typed in individual DNA samples, as well as in twins/siblings phenotyped for cardiovascular and autonomic traits. Biochemical properties of the associated transporter were evaluated in cellular assays. RESULTS: After chip hybridization and calculation of relative allele scores, the peak associations were typed in individual samples, revealing an association between hypertension, systolic BP, and diastolic BP and the previously uncharacterized solute carrier SLC35F3. The BP genetic association at SLC35F3 was validated by meta-analysis in an independent sample from the original source population, as well as the International Consortium for Blood Pressure Genome-Wide Association Studies (across North America and western Europe). Sequence homology to a putative yeast thiamine (vitamin B1) transporter prompted us to express human SLC35F3 in Escherichia coli, which catalyzed [(3)H]-thiamine uptake. SLC35F3 risk-allele homozygotes (T/T) displayed decreased erythrocyte thiamine content on microbiological assay. In twin pairs, the SLC35F3 risk allele predicted heritable cardiovascular traits previously associated with thiamine deficiency, including elevated cardiac stroke volume with decreased vascular resistance, and elevated pressor responses to environmental (cold) stress. Allelic expression imbalance confirmed that cis variation at the human SLC35F3 locus influenced expression of that gene, and the allelic expression imbalance peak coincided with the hypertension peak. CONCLUSIONS: Novel strategies were coupled to position a new hypertension-susceptibility locus, uncovering a previously unsuspected thiamine transporter whose genetic variants predicted several disturbances in cardiac and autonomic function. The results have implications for the pathogenesis and treatment of systemic hypertension.


Subject(s)
DNA/genetics , Genetic Predisposition to Disease , Hypertension/genetics , Membrane Transport Proteins/genetics , Polymorphism, Genetic , Adult , Alleles , Blood Pressure , Female , Genome-Wide Association Study , Genotype , Humans , Hypertension/metabolism , Hypertension/physiopathology , Male , Membrane Transport Proteins/metabolism , Phenotype , Thiamine/genetics , Thiamine/metabolism
7.
J Am Coll Cardiol ; 63(4): 358-68, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24140660

ABSTRACT

OBJECTIVES: The goal of this study was to understand the role of genetic variation in the catecholamine biosynthetic pathway for control of human heart rate (HR). BACKGROUND: Human HR is an integrated cardiovascular trait predictive of morbidity and survival. Because the autonomic pathway exerts rapid control over the heart, we probed the role of heredity in the control of HR, focusing on a component of the autonomic sympathetic pathway already predictive of outflow responses: cytochrome b561 (CYB561), the electron shuttle in catecholamine vesicle membranes for transmitter biosynthesis. METHODS: We studied hereditary control of HR with the twin pair design, at rest and during environmental (cold) stress. Single nucleotide polymorphism disruption of a microribonucleic acid (microRNA) recognition motif in the human CYB561 3'-UTR was identified computationally, and its differential effect on gene expression was demonstrated in a transfected luciferase reporter/3'-UTR variant. We exposed stem cell-derived human embryoid bodies to the microRNA mimic or antagomir oligonucleotides, and we observed the effects on contraction rate in proto-hearts. RESULTS: Substantial heritability (h(2)) was demonstrated by using twin pair variance components for both basal/resting HR (h(2) 50.9 ± 6.4% of trait variation, p = 2.47 × 10(-10)) and stress-augmented HR (h(2) 55.1 ± 5.9%, p = 8.79 × 10(-13)), and the 2 HR traits shared genetic determination (genetic covariance ρG 0.747 ± 0.058, p = 2.85 × 10(-9)). CYB561 displayed 1 common genetic variant in the transcript region: A+1485G (rs3087776), in the 3'-UTR, 1485 bp downstream of the termination codon, in a conserved region, with the A-allele ancestral in primates. In a twin/sibling sample (n = 576), A+1485G influenced HR, both at rest (p = 0.010) and after environmental stress (p = 0.002), with the minor (A) allele displaying a recessive effect with lower HR. The effect of A+1485G on HR was extended by meta-analysis into 2 additional population samples (total n = 2,579), and the influence remained directionally consistent and significant (p = 0.007). A+1485G disrupted a microRNA (human microribonucleic acid-1294 [hsa-miR-1294]) recognition motif in the 3'-UTR, as demonstrated by a transfected luciferase reporter/human 3'-UTR variant system in 2 different neuronal/neuroendocrine cell types. The microRNA effect was further documented by cotransfection of an hsa-miR-1294 mimic, yielding an exaggerated decline in expression of the A-allele (better match) reporter (p = 4.3 × 10(-5)). Similar findings of differential 3'-UTR allelic susceptibility to hsa-miR-1294 were noted during expression of the full-length human CYB561 messenger ribonucleic acid with its cognate 3'-UTR. Finally, exposure of stem cell-derived human embryoid bodies to hsa-miR-1294 mimic or antagomir oligonucleotides yielded directionally opposite effects on contraction rate in proto-hearts. CONCLUSIONS: HR is a substantially heritable trait, with genetic influence by variation in the adrenergic pathway, here shown for messenger ribonucleic acid translational control at the CYB561 step of transmitter formation. The results have implications for potentially modifiable autonomic pathways that influence this risk trait in the population.


Subject(s)
3' Untranslated Regions/genetics , Cytochrome b Group/genetics , Heart Rate/genetics , MicroRNAs/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cold Temperature , Female , Genes, Reporter , Genotype , Heart Rate/physiology , Humans , Luciferases/genetics , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , RNA, Messenger/metabolism , Rest/physiology , Stress, Physiological/physiology , Transfection , Young Adult
8.
J Neurochem ; 127(6): 750-61, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23786442

ABSTRACT

The Syrian Cardiomyopathic Hamster (BIO-14.6/53.58 strains) model of cardiac failure, resulting from naturally occurring deletion at the SGCD (delta-sarcoglycan) locus, displays widespread disturbances in catecholamine metabolism. Rare Mendelian myopathy disorders of human SGCD occur, although common naturally occurring SGCD genetic variation has not been evaluated for effects on human norepinephrine (NE) secretion. This study investigated the effect of SGCD genetic variation on control of NE secretion in healthy twin pairs. Genetic associations profiled SNPs across the SGCD locus. Trait heritability (h(2)) and genetic covariance (pleiotropy; shared h(2)) were evaluated. Sympathochromaffin exocytosis in vivo was probed in plasma by both catecholamines and Chromogranin B (CHGB). Plasma NE is substantially heritable (p = 3.19E-16, at 65.2 ± 5.0% of trait variance), sharing significant (p < 0.05) genetic determination with circulating and urinary catecholamines, CHGB, eGFR, and several cardio-metabolic traits. Participants with higher pNE showed significant (p < 0.05) differences in several traits, including increased BP and hypertension risk factors. Peak SGCD variant rs1835919 predicted elevated systemic vascular compliance, without changes in specifically myocardial traits. We used a chimeric-regulated secretory pathway photoprotein (CHGA-EAP) to evaluate the effect of SGCD on the exocytotic pathway in transfected PC12 cells; in transfected cells, expression of SGCD augmented CHGA trafficking into the exocytotic regulated secretory pathway. Thus, our investigation determined human NE secretion to be a highly heritable trait, influenced by common genetic variation within the SGCD locus. Circulating NE aggregates with BP and hypertension risk factors. In addition, coordinate NE and CHGB elevation by rs1835919 implicates exocytosis as the mechanism of release.


Subject(s)
Genetic Loci , Inheritance Patterns , Polymorphism, Single Nucleotide , Sarcoglycans/genetics , Sympathetic Nervous System/physiology , Adolescent , Adult , Aged , Animals , Chromogranin A/metabolism , Exocytosis , Genetic Pleiotropy , Humans , Middle Aged , Norepinephrine/blood , Norepinephrine/metabolism , PC12 Cells , Protein Transport , Quantitative Trait Loci , Quantitative Trait, Heritable , Rats , Sarcoglycans/metabolism , Young Adult
9.
Kidney Int ; 83(4): 733-40, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23344472

ABSTRACT

Uromodulin (UMOD) genetic variants cause familial juvenile hyperuricemic nephropathy, characterized by hyperuricemia with decreased renal excretion of UMOD and uric acid, suggesting a role for UMOD in the regulation of plasma uric acid. To determine this, we screened common variants across the UMOD locus in one community-based Chinese population of 1000 individuals and the other population from 642 American twins and siblings of European and Hispanic ancestry. Transcriptional activity of promoter variants was estimated in luciferase reporter plasmids transfected into HEK-293 cells and mIMCD3 cells. In the primary Chinese population, we found that carriers of the GCC haplotype had higher plasma uric acid, and three promoter variants were associated with plasma uric acid. UMOD promoter variants displayed reciprocal effects on urine uric acid excretion and plasma uric acid concentration, suggesting a primary effect on renal tubular handling of urate. These UMOD genetic marker-on-trait associations for uric acid were replicated in the independent American cohort. Site-directed mutagenesis at trait-associated UMOD promoter variants altered promoter activity in transfected luciferase reporter plasmids. Thus, UMOD promoter variants seem to initiate a cascade of transcriptional and biochemical changes influencing UMOD secretion, leading to altered plasma uric acid levels.


Subject(s)
Polymorphism, Single Nucleotide , Transcription, Genetic , Uric Acid/blood , Uromodulin/genetics , Analysis of Variance , Asian People/genetics , Biomarkers/blood , Biomarkers/urine , California , China , Creatinine/urine , Female , Gene Expression Regulation , Genes, Reporter , HEK293 Cells , Haplotypes , Hispanic or Latino/genetics , Humans , Linear Models , Male , Middle Aged , Mutagenesis, Site-Directed , Phenotype , Promoter Regions, Genetic , Sodium/urine , Transfection , Uric Acid/urine , White People/genetics
10.
J Hypertens ; 31(1): 123-33, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23149563

ABSTRACT

OBJECTIVES: The neuropeptide Y(2) G-protein-coupled receptor (NPY2R) relays signals from PYY or neuropeptide Y toward satiety and control of body mass. Targeted ablation of the NPY2R locus in mice yields obesity, and studies of NPY2R promoter genetic variation in more than 10,000 human participants indicate its involvement in control of obesity and BMI. Here we searched for genetic variation across the human NPY2R locus and probed its functional effects, especially in the proximal promoter. METHODS AND RESULTS: Twin pair studies indicated substantial heritability for multiple cardiometabolic traits, including BMI, SBP, DBP, and PYY, an endogenous agonist at NPY2R. Systematic polymorphism discovery by resequencing across NPY2R uncovered 21 genetic variants, 10 of which were common [minor allele frequency (MAF) >5%], creating one to two linkage disequilibrium blocks in multiple biogeographic ancestries. In vivo, NPY2R haplotypes were associated with both BMI (P = 3.75E-04) and PYY (P = 4.01E-06). Computational approaches revealed that proximal promoter variants G-1606A, C-599T, and A-224G disrupt predicted IRF1 (A>G), FOXI1 (T>C), and SNAI1 (A>G) response elements. In neuroendocrine cells transfected with NPY2R promoter/luciferase reporter plasmids, all three variants and their resulting haplotypes influenced transcription (G-1606A, P < 2.97E-06; C-599T, P < 1.17E-06; A-224G, P < 2.04E-06), and transcription was differentially augmented or impaired by coexpression of either the cognate full-length transcription factors or their specific siRNAs at each site. Endogenous expression of transcripts for NPY2R, IRF1, and SNAI1 was documented in neuroendocrine cells, and the NPY2R mRNA was differentially expressed in two neuroendocrine tissues (adrenal gland, brainstem) of a rodent model of hypertension and the metabolic syndrome, the spontaneously hypertensive rat. CONCLUSION: We conclude that common genetic variation in the proximal NPY2R promoter influences transcription factor binding so as to alter gene expression in neuroendocrine cells, and consequently cardiometabolic traits in humans. These results unveil a novel control point, whereby cis-acting genetic variation contributes to control of complex cardiometabolic traits, and point to new transcriptional strategies for intervention into neuropeptide actions and their cardiometabolic consequences.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Metabolic Syndrome/genetics , Obesity/genetics , Promoter Regions, Genetic/genetics , Receptors, Neuropeptide Y/genetics , Amino Acid Sequence , Animals , Cell Line, Tumor , Female , Forkhead Transcription Factors/genetics , Humans , Male , Molecular Sequence Data , Nucleotide Motifs/genetics , Polymorphism, Genetic , Rats , Rats, Inbred WKY , Risk Factors
11.
PLoS One ; 8(12): e82956, 2013.
Article in English | MEDLINE | ID: mdl-24391727

ABSTRACT

BACKGROUND: Elevated sympathetic activity is associated with kidney dysfunction. Here we used twin pairs to probe heritability of GFR and its genetic covariance with other traits. METHODS: We evaluated renal and adrenergic phenotypes in twins. GFR was estimated by CKD-EPI algorithm. Heritability and genetic covariance of eGFR and associated risk traits were estimated by variance-components. Meta-analysis probed reproducibility of DBH genetic effects. Effect of DBH genetic variation on renal disease was tested in the NIDDK-AASK cohort. RESULTS: Norepinephrine secretion rose across eGFR tertiles while eGFR fell (p<0.0001). eGFR was heritable, at h(2) = 67.3±4.7% (p = 3.0E-18), as were secretion of norepinephrine (h(2) = 66.5±5.0%, p = 3.2E-16) and dopamine (h(2) = 56.5±5.6%, p = 1.8E-13), and eGFR displayed genetic co-determination (covariance) with norepinephrine (ρG = -0.557±0.088, p = 1.11E-08) as well as dopamine (ρG = -0.223±0.101, p = 2.3E-02). Since dopamine ß-hydroxylase (DBH) catalyzes conversion of dopamine to norepinephrine, we studied functional variation at DBH; DBH promoter haplotypes predicted transcriptional activity (p<0.001), plasma DBH (p<0.0001) and norepinephrine (p = 0.0297) secretion; transcriptional activity was inversely (p<0.0001) associated with basal eGFR. Meta-analysis validated DBH haplotype effects on eGFR across 3 samples. In NIDDK-AASK, we established a role for DBH promoter variation in long-term renal decline rate (GFR slope, p = 0.003). CONCLUSIONS: The heritable GFR trait shares genetic determination with catecholamines, suggesting new pathophysiologic, diagnostic and therapeutic approaches towards disorders of GFR as well as CKD. Adrenergic activity may play a role in progressive renal decline, and genetic variation at DBH may assist in profiling subjects for rational preventive treatment.


Subject(s)
Dopamine beta-Hydroxylase/genetics , Glomerular Filtration Rate/genetics , Renal Insufficiency, Chronic/genetics , Adult , Black or African American/genetics , Cohort Studies , Dopamine/physiology , Dopamine beta-Hydroxylase/physiology , Female , Genetic Variation , Glomerular Filtration Rate/physiology , Haplotypes , Humans , Male , Middle Aged , Norepinephrine/physiology , Promoter Regions, Genetic , Renal Insufficiency, Chronic/physiopathology
12.
J Am Coll Cardiol ; 60(17): 1678-89, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23021333

ABSTRACT

OBJECTIVES: This study sought to understand whether genetic variation at the Neuropeptide Y (NPY) locus governs secretion and stress responses in vivo as well as NPY gene expression in sympathochromaffin cells. BACKGROUND: The NPY is a potent pressor peptide co-released with catecholamines during stress by sympathetic axons. Genome-wide linkage on NPY secretion identified a LOD (logarithm of the odds ratio) peak spanning the NPY locus on chromosome 7p15. METHODS: Our approach began with genomics (linkage and polymorphism determination), extended into NPY genetic control of heritable stress traits in twin pairs, established transcriptional mechanisms in transfected chromaffin cells, and concluded with observations on blood pressure (BP) in the population. RESULTS: Systematic polymorphism tabulation at NPY (by re-sequencing across the locus: promoter, 4 exons, exon/intron borders, and untranslated regions; on 2n = 160 chromosomes of diverse biogeographic ancestries) identified 16 variants, of which 5 were common. We then studied healthy twin/sibling pairs (n = 399 individuals), typing 6 polymorphisms spanning the locus. Haplotype and single nucleotide polymorphism analyses indicated that proximal promoter variant ∇-880Δ (2-bp TG/-, Ins/Del, rs3037354) minor/Δ allele was associated with several heritable (h(2)) stress traits: higher NPY secretion (h(2) = 73 ± 4%) as well as greater BP response to environmental (cold) stress, and higher basal systemic vascular resistance. Association of ∇-880Δ and plasma NPY was replicated in an independent sample of 361 healthy young men, with consistent allelic effects; genetic variation at NPY also associated with plasma NPY in another independent series of 2,212 individuals derived from Australia twin pairs. Effects of allele -880Δ to increase NPY expression were directionally coordinate in vivo (on human traits) and in cells (transfected NPY promoter/luciferase reporter activity). Promoter -880Δ interrupts a novel glucocorticoid response element motif, an effect confirmed in chromaffin cells by site-directed mutagenesis on the transfected promoter, with differential glucocorticoid stimulation of the motif as well as alterations in electrophoretic mobility shifts. The same -880Δ allele also conferred risk for hypertension and accounted for approximately 4.5/approximately 2.1 mm Hg systolic BP/diastolic BP in a population sample from BP extremes. CONCLUSIONS: We conclude that common genetic variation at the NPY locus, especially in proximal promoter ∇-880Δ, disrupts glucocorticoid signaling to influence NPY transcription and secretion, raising systemic vascular resistance and early heritable responses to environmental stress, eventuating in elevated resting BP in the population. The results point to new molecular strategies for probing autonomic control of the human circulation and ultimately susceptibility to and pathogenesis of cardiovascular and neuropsychiatric disease states.


Subject(s)
DNA/genetics , Gene Expression Regulation , Genetic Predisposition to Disease , Hypertension/genetics , Neuropeptide Y/genetics , Receptors, Glucocorticoid/blood , Stress, Psychological/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Electrophoretic Mobility Shift Assay , Female , Genetic Variation , Genotype , Humans , Hypertension/blood , Male , Middle Aged , Neuropeptide Y/biosynthesis , Promoter Regions, Genetic , Signal Transduction , Stress, Psychological/blood
13.
J Hypertens ; 30(10): 1961-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22871890

ABSTRACT

BACKGROUND: Cathepsin L (CTSL1) catalyzes the formation of peptides that influence blood pressure (BP). Naturally occurring genetic variation or targeted ablation of the Ctsl1 locus in mice yield cardiovascular pathology. Here, we searched for genetic variation across the human CTSL1 locus and probed its functional effects, especially in the proximal promoter. METHODS AND RESULTS: Systematic polymorphism discovery by re-sequencing across CTSL1 in 81 patients uncovered 38 genetic variants, five of which were relatively common (MAF >5%), creating a single linkage disequilibrium block in multiple biogeographic ancestries. One of these five common variants lay in a functional domain of the gene: promoter C-171A (rs3118869), which disrupts a predicted xenobiotic response element (XRE; match C>A). In transfected CTSL1 promoter/luciferase reporter plasmids, C-171A allele influenced transcription (C>A, P = 3.36E-6), and transcription was also augmented by co-exposure to the aryl hydrocarbon receptor (AHR) complex (AHR:ARNT) in the presence of their ligand dioxin (P = 6.81E-8); allele (C vs. A) and AHR:ARNT/dioxin stimulus interacted to control gene expression (interaction P = 0.033). Endogenous Ctsl1, Ahr, and Arnt transcripts were present in chromaffin cells. Promoter functional C-171A genotype also predicted hypertension (P = 1.0E-3), SBP (P = 4.0E-4), and DBP (P = 3.0E-3), in an additive pattern for diploid genotypes (A/A > C/A > C/C) in 868 patients, and the results were extended by validation analysis into an independent population sample of 986 patients. CONCLUSION: We conclude that common genetic variation in the proximal CTSL1 promoter, especially at position C-171A, is functional in cells, and alters transcription so as to explain the association of CTSL1 with BP in vivo. At the XRE, endogenous genetic variation plus exogenous aryl hydrocarbon stimulation interact to control CTSL1 gene expression. These results unveil a novel control point whereby heredity and environment can intersect to control a complex trait, and point to new transcriptional strategies for intervention into transmitter biosynthesis and its cardiovascular consequences.


Subject(s)
Blood Pressure/genetics , Cathepsin L/genetics , Gene-Environment Interaction , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Transcription, Genetic , Xenobiotics/pharmacology , Humans
14.
Kidney Int ; 82(8): 909-19, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22739978

ABSTRACT

Myeloperoxidase (MPO) is a lysosomal enzyme that may be involved in oxidative stress-mediated kidney injury. Using a two-step approach, we measured the association of four polymorphisms across the length of the MPO gene with systemic markers of oxidative stress: plasma MPO and urinary 15-F(2t)-isoprostane levels. Adverse outcomes were measured in a primary cohort of 262 adults hospitalized with acute kidney injury, and a secondary cohort of 277 adults undergoing cardiac surgery with cardiopulmonary bypass and at risk for postoperative acute kidney injury. Dominant and haplotype multivariable logistic regression analyses found a genotype-phenotype association in the primary cohort between rs2243828, rs7208693, rs2071409, and rs2759 MPO polymorphisms and both markers of oxidative stress. In adjusted analyses, all four polymorphic allele groups had 2-3-fold higher odds for composite outcomes of dialysis or in-hospital death or a composite of dialysis, assisted mechanical ventilation, or in-hospital death. The MPO T-G-A-T haplotype copy-number was associated with lower plasma MPO levels and lower adjusted odds for the composite outcomes. Significant but less consistent associations were found in the secondary cohort. In summary, our two-step genetic association study identified several polymorphisms spanning the entire MPO gene locus and a common haplotype marker for patients at risk for acute kidney injury.


Subject(s)
Acute Kidney Injury/enzymology , Acute Kidney Injury/genetics , Peroxidase/genetics , Polymorphism, Single Nucleotide , Acute Kidney Injury/etiology , Aged , Cohort Studies , Coronary Artery Bypass/adverse effects , Dinoprost/analogs & derivatives , Female , Genetic Association Studies , Genetic Markers , Haplotypes , Humans , Isoprostanes/urine , Male , Middle Aged , Oxidative Stress , Peroxidase/blood , Postoperative Complications/enzymology , Postoperative Complications/etiology , Postoperative Complications/genetics , Prognosis
15.
Circ Cardiovasc Genet ; 5(4): 430-40, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22670052

ABSTRACT

BACKGROUND: Essential hypertension, a common complex disease, displays substantial genetic influence. Contemporary methods to dissect the genetic basis of complex diseases such as the genomewide association study are powerful, yet a large gap exists between the fraction of population trait variance explained by such associations and total disease heritability. METHODS AND RESULTS: We developed a novel, integrative method (combining animal models, transcriptomics, bioinformatics, molecular biology, and trait-extreme phenotypes) to identify candidate genes for essential hypertension and the metabolic syndrome. We first undertook transcriptome profiling on adrenal glands from blood pressure extreme mouse strains: the hypertensive BPH (blood pressure high) and hypotensive BPL (blood pressure low). Microarray data clustering revealed a striking pattern of global underexpression of intermediary metabolism transcripts in BPH. The MITRA algorithm identified a conserved motif in the transcriptional regulatory regions of the underexpressed metabolic genes, and we then hypothesized that regulation through this motif contributed to the global underexpression. Luciferase reporter assays demonstrated transcriptional activity of the motif through transcription factors HOXA3, SRY, and YY1. We finally hypothesized that genetic variation at HOXA3, SRY, and YY1 might predict blood pressure and other metabolic syndrome traits in humans. Tagging variants for each locus were associated with blood pressure in a human population blood pressure extreme sample with the most extensive associations for YY1 tagging single nucleotide polymorphism rs11625658 on systolic blood pressure, diastolic blood pressure, body mass index, and fasting glucose. Meta-analysis extended the YY1 results into 2 additional large population samples with significant effects preserved on diastolic blood pressure, body mass index, and fasting glucose. CONCLUSIONS: The results outline an innovative, systematic approach to the genetic pathogenesis of complex cardiovascular disease traits and point to transcription factor YY1 as a potential candidate gene involved in essential hypertension and the cardiometabolic syndrome.


Subject(s)
Computational Biology/methods , Hypertension/genetics , Metabolic Syndrome/genetics , Myocardium/metabolism , Neurosecretory Systems/metabolism , Transcriptome/genetics , Adrenal Glands/metabolism , Animals , Base Sequence , Blood Pressure/genetics , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease , Humans , Luciferases/metabolism , Male , Meta-Analysis as Topic , Mice , Molecular Sequence Data , Myocardium/pathology , Nucleotide Motifs/genetics , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Protein Binding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Activation/genetics
16.
J Am Coll Cardiol ; 59(24): 2206-16, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22676942

ABSTRACT

OBJECTIVES: The purpose of this study is to better understand the origins and progression of pre-hypertension. BACKGROUND: Pre-hypertension is a risk factor for progression to hypertension, cardiovascular disease, and increased mortality. We used a cross-sectional twin study design to examine the role of heredity in likely pathophysiological events (autonomic or hemodynamic) in pre-hypertension. METHODS: Eight hundred twelve individuals (337 normotensive, 340 pre-hypertensive, 135 hypertensive) were evaluated in a sample of twin pairs, their siblings, and other family members. They underwent noninvasive hemodynamic, autonomic, and biochemical testing, as well as estimates of trait heritability (the percentage of trait variance accounted for by heredity) and pleiotropy (the genetic covariance or shared genetic determination of traits) by variance components. RESULTS: In the hemodynamic realm, an elevation of cardiac contractility prompted increased stroke volume, in turn increasing cardiac output, which elevated blood pressure into the pre-hypertension range. Autonomic monitoring detected an elevation of norepinephrine secretion plus a decline in cardiac parasympathetic tone. Twin pair variance components documented substantial heritability as well as joint genetic determination for blood pressure and the contributory autonomic and hemodynamic traits. Genetic variation at a pathway locus also indicated pleiotropic effects on contractility and blood pressure. CONCLUSIONS: Elevated blood pressure in pre-hypertension results from increased cardiac output, driven by contractility as well as heart rate, which may reflect both diminished parasympathetic and increased sympathetic tone. In the face of increased cardiac output, systemic vascular resistance fails to decline homeostatically. Such traits display substantial heritability and shared genetic determination, although by loci not yet elucidated. These findings clarify the role of heredity in the origin of pre-hypertension and its autonomic and hemodynamic pathogenesis. The results also establish pathways that suggest new therapeutic targets for pre-hypertension, or approaches to its prevention.


Subject(s)
Prehypertension/physiopathology , Adult , Blood Pressure/physiology , Calcium Channels, L-Type/physiology , Cardiac Output , Cross-Sectional Studies , Disease Progression , Female , Hemodynamics , Humans , Male , Myocardial Contraction/physiology , Norepinephrine/metabolism , Prehypertension/genetics , Stroke Volume , Vascular Resistance/physiology
17.
Am J Hypertens ; 25(1): 29-40, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21918574

ABSTRACT

BACKGROUND: The cardiometabolic syndrome comprised of multiple correlated traits, but its origin is incompletely understood. Chromogranin A (CHGA) is required for formation of the catecholamine secretory pathway in sympathochromaffin cells. In twin pair studies, we found that CHGA traits aggregated with body mass index (BMI), as well as its biochemical determinant leptin. METHODS Here we used the twin method to probe the role of heredity in generating such risk traits, and then investigated the role of risk-trait-associated CHGA promoter genetic variation in transfected chromaffin cells. Trait heritability (h(2)) and shared genetic determination among traits (pleiotropy, genetic covariance, ρ(G)) were estimated by variance components in twin pairs. RESULTS: CHGA, BMI, and leptin each displayed substantial h(2), and the traits also aggregated with several features of the metabolic syndrome (e.g., insulin resistance, blood pressure (BP), hypertension, catecholamines, and C-reactive protein (CRP)). Twin studies demonstrated genetic covariance (pleiotropy, ρ(G)) for CHGA, BMI, and leptin with other metabolic traits (insulin resistance, BP, and CRP). We therefore investigated the CHGA locus for mechanisms of codetermination with such metabolic traits. A common functional variant in the human CHGA promoter (G-462A, rs9658634, minor allele frequency ~21%) was associated with leptin and CRP secretion, as well as BMI, especially in women; marker-on-trait effects on BMI were replicated across twin populations on two continents. In CHGA promoter/luciferase reporter plasmids transfected into chromaffin cells, G-462A alleles differed markedly in reporter expression. The G-462A variant disrupted predicted transcriptional control by a PPARγ/RXRα motif and costimulation by PPARγ/RXRα and their cognate ligands, differentially activated the two alleles. During chromatin immunoprecipitation, endogenous PPARγ bound the motif. CONCLUSIONS: Multiple features of the metabolic syndrome are thus under joint (pleiotropic) genetic determination, with CHGA as one such contributory locus: a common polymorphism in the promoter (G-462A) of CHGA predicts such heritable metabolic traits as BMI and leptin. CHGA promoter variant G-462A was not only associated with such metabolic traits but also disrupted a PPARγ/RXRα motif and responded differentially to characteristic trans-activators of that motif. The results suggest novel links between the catecholaminergic system and risk for the metabolic syndrome as well as systemic hypertension.


Subject(s)
Chromogranin A/genetics , Metabolic Syndrome/genetics , Promoter Regions, Genetic/genetics , Adult , Aged , Aged, 80 and over , Body Mass Index , C-Reactive Protein/genetics , Chromaffin Cells/metabolism , Female , Genetic Pleiotropy , Humans , Leptin/genetics , Male , Middle Aged , Polymorphism, Genetic , Risk , Twins, Dizygotic , Twins, Monozygotic
18.
Nephron Clin Pract ; 122(3-4): 107-13, 2012.
Article in English | MEDLINE | ID: mdl-23635481

ABSTRACT

BACKGROUND: Kallikrein-1 (KLK1) is a highly conserved serine protease that is expressed in the kidney and involved in blood pressure regulation. The activity of this enzyme is diminished in acute kidney injury (AKI). METHODS: We first evaluated the potential role of functional multiallelic KLK1 promoter gene polymorphisms in a case-control study of 481 subjects (214 hospitalized patients with AKI of mixed causes and 267 healthy subjects). The complex, multiallelic G/C-rich repeat region of the proximal KLK1 promoter was determined by direct Sanger/capillary resequencing. RESULTS: 16 alleles were identified in a complex, polymorphic G/C-rich region of the KLK1 proximal promoter; 5 of these alleles (F, G, H, I, and K) were associated with development of AKI. Alleles I and G were classified as risk-alleles (unadjusted OR 1.86; 95% CI 1.23, 2.81; p = 0.003), whereas alleles F, H, and K were classified as protective-alleles (unadjusted OR 0.32; 95% CI 0.22, 0.46; p < 0.001) according to their directional association with development of AKI. After adjustment for sex, race, preexisting chronic kidney disease and APACHE II score, the KLK1 risk-allele (I or G) carrier state was associated with the composite of ≥2-fold increase in serum creatinine, oliguria, or dialysis requirement (adjusted OR 2.71; 95% CI 1.14, 6.44; p = 0.02). The KLK1 risk-allele carrier state was also marginally associated with the composite of ≥2-fold increase in serum creatinine, oliguria, dialysis requirement, or in-hospital death (adjusted OR 2.33; 95% CI 0.98, 5.52; p = 0.06). CONCLUSIONS: KLK1 promoter polymorphisms are associated with development of AKI and adverse outcomes. Further studies are needed to validate these findings.


Subject(s)
Acute Kidney Injury/epidemiology , Acute Kidney Injury/genetics , Genetic Markers/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Tissue Kallikreins/genetics , Adult , Age Distribution , Aged , Boston/epidemiology , Case-Control Studies , Cohort Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Humans , Longitudinal Studies , Male , Middle Aged , Prevalence , Risk Assessment , Sex Distribution
19.
BMC Nephrol ; 12: 27, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21679467

ABSTRACT

BACKGROUND: Renal kallikrein (KLK1) synthesis and urinary excretion are reportedly diminished during AKI (acute kidney injury) in animal models, and provision of kallikrein abrogates renal injury in this setting, but data in human AKI is limited. Therefore we first examined KLK1 renal excretion in human AKI, and then probed potential endocrine and epigenetic mechanisms for its alterations. METHODS: KLK1 enzymatic activity excretion was evaluated in urine from patients with established or incipient AKI, versus healthy/non-hospital as well as ICU controls. Endocrine control of KLK1 excretion was then probed by catecholamine and aldosterone measurements in established AKI versus healthy controls. To examine epigenetic control of KLK1 synthesis, we tested blood and urine DNA for changes in promoter CpG methylation of the KLK1 gene, as well as LINE-1 elements, by bisulfite sequencing. RESULTS: Patients with early/incipient AKI displayed a modest reduction of KLK1 excretion, but unexpectedly, established AKI displayed substantially elevated urine KLK1 excretion, ~11-fold higher than healthy controls, and ~3-fold greater than ICU controls. We then probed potential mechanisms of the change. Established AKI patients had lower SBP, higher heart rate, and higher epinephrine excretion than healthy controls, though aldosterone excretion was not different. Promoter KLK1 CpG methylation was higher in blood than urine DNA, while KLK1 methylation in blood DNA was significantly higher in established AKI than healthy controls, though KLK1 methylation in urine tended to be higher in AKI, directionally consistent with earlier/incipient but not later/established changes in KLK1 excretion in AKI. On multivariate ANOVA, AKI displayed coordinate changes in KLK1 excretion and promoter methylation, though directionally opposite to expectation. Control (LINE-1 repetitive element) methylation in blood and urine DNA was similar between AKI and controls. CONCLUSIONS: Unexpectedly, increased KLK1 excretion in AKI patients was found; this increase is likely to be due in part to increments in adrenergic tone during BP depression. Epigenetic changes at KLK1 may also play a role in early changes of KLK1 expression and thus AKI susceptibility or recovery.


Subject(s)
Acute Kidney Injury/enzymology , Acute Kidney Injury/genetics , Epigenesis, Genetic , Gene Expression Regulation, Enzymologic , Kallikreins/genetics , Kallikreins/urine , Adult , Aged , Base Sequence , Biomarkers/urine , Cohort Studies , Epigenesis, Genetic/genetics , Female , Follow-Up Studies , Humans , Intensive Care Units , Kallikreins/biosynthesis , Male , Middle Aged , Molecular Sequence Data , Prospective Studies , Up-Regulation/genetics
20.
J Pharmacol Exp Ther ; 338(1): 125-33, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21493754

ABSTRACT

Cholinergic neurotransmission in the central and autonomic nervous systems regulates immediate variations in and longer-term maintenance of cardiovascular function with acetylcholinesterase (AChE) activity that is critical to temporal responsiveness. Butyrylcholinesterase (BChE), largely confined to the liver and plasma, subserves metabolic functions. AChE and BChE are found in hematopoietic cells and plasma, enabling one to correlate enzyme levels in whole blood with hereditary traits in twins. Using both twin and unrelated subjects, we found certain single nucleotide polymorphisms (SNPs) in the ACHE gene correlated with catalytic properties and general cardiovascular functions. SNP discovery from ACHE resequencing identified 19 SNPs: 7 coding SNPs (cSNPs), of which 4 are nonsynonymous, and 12 SNPs in untranslated regions, of which 3 are in a conserved sequence of an upstream intron. Both AChE and BChE activity traits in blood were heritable: AChE at 48.8 ± 6.1% and BChE at 81.4 ± 2.8%. Allelic and haplotype variations in the ACHE and BCHE genes were associated with changes in blood AChE and BChE activities. AChE activity was associated with BP status and SBP, whereas BChE activity was associated with features of the metabolic syndrome (especially body weight and BMI). Gene products from cDNAs with nonsynonymous cSNPs were expressed and purified. Protein expression of ACHE nonsynonymous variant D134H (SNP6) is impaired: this variant shows compromised stability and altered rates of organophosphate inhibition and oxime-assisted reactivation. A substantial fraction of the D134H instability could be reversed in the D134H/R136Q mutant. Hence, common genetic variations at ACHE and BCHE loci were associated with changes in corresponding enzymatic activities in blood.


Subject(s)
Cardiovascular Diseases/genetics , Cholinesterases/genetics , Genetic Variation/genetics , Metabolic Diseases/genetics , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Acetylcholinesterase/blood , Acetylcholinesterase/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Butyrylcholinesterase/blood , Butyrylcholinesterase/genetics , Cardiovascular Diseases/enzymology , Cholinesterases/blood , Female , HEK293 Cells , Humans , Male , Metabolic Diseases/enzymology , Middle Aged , Polymorphism, Single Nucleotide/genetics , Protein Structure, Secondary , Quantitative Trait, Heritable , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...