Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38337312

ABSTRACT

Owing to the environmental pollution caused by petroleum-based packaging materials, there is an imminent need to develop novel food packaging materials. Nanocellulose, which is a one-dimensional structure, has excellent physical and chemical properties, such as renewability, degradability, sound mechanical properties, and good biocompatibility, indicating promising applications in modern industry, particularly in food packaging. This article introduces nanocellulose, followed by its extraction methods and the preparation of relevant composite films. Meanwhile, the performances of nanocellulose composite films in improving the mechanical, barrier (oxygen, water vapor, ultraviolet) and thermal properties of food packaging materials and the development of biodegradable or edible packaging materials in the food industry are elaborated. In addition, the excellent performances of nanocellulose composites for the packaging and preservation of various food categories are outlined. This study provides a theoretical framework for the development and utilization of nanocellulose composite films in the food packaging industry.

2.
Int J Biol Macromol ; 226: 194-201, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36493924

ABSTRACT

This paper presents a binary reinforcement system of polyamide polyamine epichlorohydrin with nanocellulose (PAE-NC) for effectively modification of the reclaimed fibres for paper production, and based on the improvement of physical and mechanical properties of cellulosic fibres together with PAE-NC self-crosslinking networks, the strengthening mechanisms of recycled papers are examined. The PAE-NC binary system was applied directly to old corrugated container (OCC) and softwood bleached kraft pulp (SWBKP), and handsheets are prepared with varying amounts of PAE/NC/PAE-NC, namely 0.05, 0.1, 0.3, 0.5, 0.75, 1.0, 1.5, 2.0 wt% (dry pulp). The results showed that the studied additives improved the performance of recycled fibres, whether SWBKP or OCC pulp, and handsheets in solely or combined mechanisms except for the air permeability of the handsheets. The treatment of PAE-NC combination was significantly more effective than those of PAE or NC alone for both OCC and SWBKP, although the combined PAE-NC treatment results in better performance enhancement for OCC than SWBKP handsheets, and the NC alone is more effective than PAE for SWBKP recycled paper and conversely for OCC recycled paper. SEM observations further confirmed that the combined PAE-NC addition treatment imparted a relatively uniform surface structure to the handsheet.


Subject(s)
Epichlorohydrin , Nylons , Epichlorohydrin/chemistry , Carbohydrates , Paper
3.
Polymers (Basel) ; 14(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35012025

ABSTRACT

With rising interior air pollution, health, and food shortage concerns, wood adhesives derived from non-food sustainable materials have therefore attracted considerable attention. Here we developed an eco-friendly cottonseed-lignin adhesive consisting of non-food defatted cottonseed flour (DCF), alkali lignin (AL), and graphene oxide (GO). The cation-π interaction, and hydrogen and covalent bonds between AL@GO and DCF collectively enhanced the cross-linking structure of the cured cottonseed-lignin adhesive, based on the Fourier-transform infrared spectroscopy, thermogravimetric analyses, scanning electron microscopy, and sol-gel tests. The high performance of the developed cottonseed-lignin adhesive was evidenced by its increased wet/dry shear strength and decreased rheological properties before curing and improved thermal stability and decreased soluble substances after curing. Particularly, the highest wet shear strength of poplar plywood bonded with cottonseed-lignin adhesive was 1.08 MPa, which increased by 74.2 and 54.3% as compared to the control and requirement of the Chinese standard GB/T 9846-2015 for interior plywood (≥0.7 MPa), respectively. The technology and resultant adhesives showed great potential in the preparation of green woody composites for many applications.

4.
Carbohydr Polym ; 250: 116884, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33049825

ABSTRACT

Development of eco-friendly adhesives from renewable biomass has attracted considerable attention in recent years. Here, we present a novel approach via combination of waste newspaper (WNP) powder, oxidized glutinous rice starch, and polyamidoamine-epichlorohydrin (PAE) to prepare a formaldehyde-free starch-cellulosic adhesive (SCA) for woody composites. The oxidation treatment made the carboxyl/carbonyl groups more available in starch. Plywood bonded by the optimum SCA with 50 wt% of the WNP powder showed a wet shear strength of 0.83 MPa exceeding that of the oxidized starch adhesive by 130.5 %. During the curing process of SCA, the oxidized starch and WNP fiber participated into the crosslinking reaction with PAE via ester and ether bonds, as evidenced by FTIR analysis. The resulting cured adhesive had enhanced crystalline structures, thermal properties, hydrophobicity, wet-cohesion, rheological properties, and adhesiveness to wood. The SCA showed great potential in wood composites as an alternative to formaldehyde-derived adhesives.

5.
RSC Adv ; 9(37): 21530-21538, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-35521311

ABSTRACT

In order to solve the practical problem of heat transfer during the hot pressing process of a novel wood-plastic composite plywood, this paper investigates the perforation treatment of polyvinyl chloride (PVC) plastic films and their plywood composites. The PVC films were pretreated by the physical punching method, and the effects of PVC perforation diameter, hot pressing time and hot pressing temperature on the mechanical properties of the plywood composites were investigated by orthogonal experimental design. The results showed that the optimum hot pressing time was 7 min, the hot pressing temperature was 170 °C, and the PVC perforation diameter was 15 mm for the optimum mechanical properties. The punching pretreatment of PVC films gave rise to a reduction of the hot pressing time by 51 s due to improved heat transfer and heat loss by 5.06%, and allowed an increase in the initial moisture content of the veneer by 2-3%, thereby cutting down the drying cost in the veneer production process, which is conducive to energy conservation and environmental protection.

6.
Polymers (Basel) ; 10(3)2018 Mar 05.
Article in English | MEDLINE | ID: mdl-30966301

ABSTRACT

This paper presents the interfacial optimisation of wood plastic composites (WPC) based on recycled wood flour and polyethylene by employing maleated and silane coupling agents. The effect of the incorporation of the coupling agents on the variation of chemical structure of the composites were investigated by Attenuated total reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and Solid state 13C Nuclear Magnetic Resonance spectroscopy (NMR) analyses. The results revealed the chemical reactions that occurred between the coupling agents and raw materials, which thus contributed to the enhancement of compatibility and interfacial adhesion between the constituents of WPC. NMR results also indicated that there existed the transformation of crystalline cellulose to an amorphous state during the coupling agent treatments, reflecting the inferior resonance of crystalline carbohydrates. Fluorescence Microscope (FM) and Scanning Electron Microscope (SEM) analyses showed the improvements of wood particle dispersion and wettability, compatibility of the constituents, and resin penetration, and impregnation of the composites after the coupling agent treatments. The optimised interface of the composites was attributed to interdiffusion, electrostatic adhesion, chemical reactions, and mechanical interlocking bonding mechanisms.

7.
Polymers (Basel) ; 9(10)2017 Oct 16.
Article in English | MEDLINE | ID: mdl-30965816

ABSTRACT

Soy-based adhesives have attracted much attention recently because they are environmentally safe, low cost, and readily available. To improve the gluability and water resistance of soy-based adhesives, we prepared an enzyme-treated soy-based adhesive modified with an epoxy resin. We investigated the wet shear strength of plywood bonded with the modified adhesive using the boiling-water test. Fourier transformed infrared spectroscopy (FTIR) and ¹H nuclear magnetic resonance analysis were used to characterize the reaction between epoxy groups and ⁻NH2 groups in the modified soy-based adhesives. FTIR analysis confirmed the cross-linking structure in the cured adhesives. Viscosity and the solid content of soy-based adhesives gradually increased with the increasing amount of epoxy resin, but had little effect on its operability. Wet shear strength of plywood samples increased as the amount of epoxy resin was increased, whereas the inverse trend was observed regarding the water absorption of cured adhesives. Compared to an unmodified adhesive, the addition of 30% of epoxy resin increased the wet shear strength of plywood samples by 58.3% (0.95 MPa), meeting the requirement of the Chinese National Standard for exterior plywood. Differential scanning calorimetry and thermogravimetric analysis showed the improved thermostability of the cured adhesives after curing at 160 °C. These results suggest that epoxy resin could effectively improve the performance of enzyme-treated soy-based adhesives, which might provide a new option for the preparation of soy-based adhesives with high gluability and water resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...