Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 11146, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636432

ABSTRACT

Presently, rice-fallows are targeted for cropping intensification in South Asia. Rice-fallows a rainfed mono-cropping system remain fallow after rice due to lack of irrigation facilities and poor socio-economic condition of the farmers. Nevertheless, there is the scope of including ecologically adaptable winter crops in water-limited rice-fallow conditions with effective moisture conservation practices. The study aimed to identify the winter-crops that are adaptable and productive in rice-fallow conditions and to evaluate the different tillage-based crop establishment practices for soil moisture conservation, grain yield, economics, and sustainability parameters. Six different crop establishment and residue management (CERM) practices viz., zero-tillage direct seeded rice (ZTDSR), zero-tillage transplanted rice (ZTTPR), puddled transplanted rice (PTR), ZTDSR with rice residue retention (ZTDSRR+), ZTTPR with rice residue retention (ZTTPRR+), PTR with rice residue retention (PTRR+) as main-plot treatment and five winter crops (chickpea, lentil, safflower, linseed, and mustard) as sub-plot treatment were evaluated in a split-plot design. The productivity of grain legumes (chickpea and lentil) was higher over oilseed crops in rice-fallow conditions with an order of chickpea > lentil > safflower > mustard > linseed. Among the CERM practices, ZTDSRR+ and ZTDSR treatments increased the grain yield of all the winter crops over PTR treatment, which was primarily attributed to higher soil moisture retention for an extended period. Grain yield increment with conservation tillage practices was highly prominent in safflower (190%) followed by lentil (93%) and chickpea (70%). Rice grain yield was higher (7-35%) under PTR treatment followed by ZTDSR treatment. Conservation tillage practices (ZTDSR, ZTTPR) reduced energy use (11-20%) and increased the energy ratio over conventional tillage practice (PTR), higher in rice-safflower, rice-lentil and rice-chickpea rotations. Higher net return was attained in rice-safflower and rice-chickpea rotations with ZTDSRR+ treatment. Predicted emission of greenhouse gases was markedly reduced in ZTDSR treatment (30%) compared to ZTTPR and PTR treatments. Hence, the study suggests that cropping intensification of rice-fallows with the inclusion of winter crops like chickpea, lentil, and safflower following conservation tillage practices (ZTDSRR+ in particular) could be the strategic options for achieving the higher system productivity, economic returns, and energy use efficiency with the reduced emission of greenhouse gases.

2.
Environ Sci Pollut Res Int ; 26(28): 29409-29423, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31401802

ABSTRACT

Rice fallow, a rainfed lowland agro-ecology, is presently gaining particular attention for sustainable cropping intensification in the South Asia. Nevertheless, cropping intensification of rice-fallow areas is largely challenged by non-availability of irrigation, the poor financial status of farmers and soil constraints. Indeed, fast depletion of the soil residual moisture remains the primary obstacle for growing a crop in succession in rice fallows. A field investigation was carried out to identify the most adaptable rice-winter crop rotation and to customize appropriate crop establishment practice for a winter crop that could conserve the soil moisture. Treatments comprised of three crop establishment practices for winter crops [utera (relay cropping, i.e. broadcasting of seeds in standing rice crop 15 days before harvesting), zero tillage (ZT) and ZT with mulching (ZTM)], and five post-rainy-season crops (lentil, chickpea, lathyrus, mustard and linseed). Results showed that lathyrus and lentil could be the potential winter crop in the rice-fallow condition of Eastern India. Except for mustard crop, the productivity of all the winter crops was higher in utera cropping, which was primarily attributed to early crop growth and higher soil moisture content over ZT and ZTM treatments. The higher water use efficiency was recorded under utera cropping over ZT and ZTM treatments. Higher system productivity (system rice equivalent yield) in rice-utera lathyrus (9.3 t ha-1) and rice-utera lentil (8.1 t ha-1) led to higher net returns and production efficiency over other treatments (winter crop × crop establishment practice). Benefits of rice residue mulching were prominent in lentil, mustard and linseed crop productivity. Energy use efficiency of different crop establishment practices follows the trend of utera > ZT > ZTM (p < 0.05), being highest in rice-utera lathyrus (5.3) followed by rice-utera lentil (4.8) crop rotations. The simulated data shows that winter crops grown under utera led to less emission of greenhouse gas (GHG) and low global warming potential (GWP) as compared to ZT and ZTM treatments. Rice-lathyrus, rice-lentil and rice-chickpea systems had lower N2O emission than rice-mustard and rice-linseed rotations. Hence, lathyrus and lentil could be included in rice fallows ideally with utera for sustainable cropping intensification and improving the farmers' income in Eastern India.


Subject(s)
Crops, Agricultural/growth & development , Nitrous Oxide/analysis , Oryza/growth & development , Soil/chemistry , Asia , Crop Production , Global Warming , Greenhouse Gases , India , Nitrous Oxide/chemistry , Rain , Seasons
3.
Funct Plant Biol ; 44(9): 907-916, 2017 Sep.
Article in English | MEDLINE | ID: mdl-32480619

ABSTRACT

Potassium (K) is one of the limiting factors that negatively influenced rice growth and yield in submergence-prone soils. We conducted an experiment during the wet season of 2014-15 to achieve optimal doses of K and understand the effect of K application on submerged rice in terms of survival, chlorophyll content, non-structural carbohydrates (NSC), anti-oxidant activities and yield. Results revealed that chlorophyll and NSC content were significantly (P≤0.05) lower whereas the activity of anti-oxidants (catalase, superoxide dismutase and total peroxidase) were significantly (P≤0.05) higher after submergence compared with pre-submergence. Further, application of K at a higher basal dose (40kgha-1) was more beneficial to improve survival after de-submergence by maintaining NSC, chlorophyll content and higher activity of anti-oxidants with lower level of lipid peroxidation. Furthermore, results showed superiority of the treatments having application of higher doses with one foliar spray (T9-40kg K2O ha-1 (basal)+one foliar spray at 0.5% K at panicle initiation (PI) stage) for grain yield. We conclude that application of a higher dose of K with one foliar application at PI stage is more beneficial to enhance plant survival, better recovery and yield gain of rice during complete submergence.

SELECTION OF CITATIONS
SEARCH DETAIL
...