Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(11): 2766-2785, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717456

ABSTRACT

Covalent organic frameworks (COFs) constitute a class of highly functional porous materials composed of lightweight elements interconnected by covalent bonds, characterized by structural order, high crystallinity, and large specific surface area. The integration of naturally occurring porphyrin molecules, renowned for their inherent rigidity and conjugate planarity, as building blocks in COFs has garnered significant attention. This strategic incorporation addresses the limitations associated with free-standing porphyrins, resulting in the creation of well-organized porous crystal structures with molecular-level directional arrangements. The unique optical, electrical, and biochemical properties inherent to porphyrin molecules endow these COFs with diversified applications, particularly in the realm of biology. This review comprehensively explores the synthesis and modulation strategies employed in the development of porphyrin-based COFs and delves into their multifaceted applications in biological contexts. A chronological depiction of the evolution from design to application is presented, accompanied by an analysis of the existing challenges. Furthermore, this review offers directional guidance for the structural design of porphyrin-based COFs and underscores their promising prospects in the field of biology.


Subject(s)
Metal-Organic Frameworks , Porphyrins , Porphyrins/chemistry , Porphyrins/chemical synthesis , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/chemical synthesis , Humans , Porosity , Animals
2.
Adv Colloid Interface Sci ; 324: 103092, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38325008

ABSTRACT

Metal-organic frameworks (MOFs), featuring tunable conductivity, tailored pore/structure and high surface area, have emerged as promising electrode nanomaterials for ion storage in capacitive deionization (CDI) and garnered tremendous attention in recent years. Despite the many advantages, the perspective from which MOFs should be designed and prepared for use as CDI electrode materials still faces various challenges that hinder their practical application. This summary proposes design principles for the pore size, pore environment, structure and dimensions of MOFs to precisely tailor the surface area, selectivity, conductivity, and Faradaic activity of electrode materials based on the ion storage mechanism in the CDI process. The account provides a new perspective to deepen the understanding of the fundamental issues of MOFs electrode materials to further meet the practical applications of CDI.

3.
Chemosphere ; 301: 134595, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35427664

ABSTRACT

Biomass waste, a good candidate for advanced carbon materials for sustainable electrodes, is receiving more and more attention for high value-added materials because of its promising contribution to economic growth and sustainable development. We proposed a green co-hydrothermal approach to prepare lotus seedpods biochar (BC) decorated molybdenum disulfide (MoS2) from waste lotus seedpods and precursors of MoS2, and a portable, flexible, outdoor and inexpensive sensing platform for hyperin on the integrated flexible three-electrode using U-disk potentiostat with smartphone was successfully developed. Structure and properties of MoS2-BC were characterized, it was proved that BC improves microstructure and morphology, electronic conductivity, electrode stability and electrocatalytic properties of MoS2. Attributing to these impressive features, the detection signal of hyperin was significantly amplified by the MoS2-BC modified glass carbon electrode (GCE) in detection range of 0.01-21 µΜ with detection limit (LOD) of 5 nM. It was worth mentioning that the MoS2-BC modified screen-printed electrode (SPE) performs hyperin detection in range of 100 nM - 3 µM with LOD 50 nM (S/N = 3). The practicability of the proposed method confirmed that the portable, on-site, low-cost, and outdoor detection of hyperin was feasible and practical in comparison with traditional both electrochemical sensing and HPLC methods.


Subject(s)
Charcoal , Lotus , Molybdenum , Quercetin , Seeds , Carbon , Disulfides/chemistry , Electrochemical Techniques , Electrodes , Limit of Detection , Lotus/chemistry , Molybdenum/chemistry , Quercetin/analogs & derivatives , Quercetin/analysis , Seeds/chemistry
4.
Chemosphere ; 289: 133116, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34848220

ABSTRACT

It is an urgent need to exploit a potentially green, cost efficient and eco-friendly strategy for the utilization of waste kudzu vine. We developed a one-step green preparation of kudzu vine biochar (BC) decorated graphene-like molybdenum selenide (MoSe2) with the oxidase-like activity as intelligent nanozyme sensing platform for voltametric detection of hesperetin (HP) in orange peel using the in-situ hydrothermal synthesis method. The structure and properties of MoSe2-BC was characterized, and found that BC significantly improved electrochemical cycle stability, electronic conductivity, electrochemical active area, and electrocatalytic activity of MoSe2. The oxidase-like activity of MoSe2-BC was confirmed by the oxidization of the colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) to form blue products and the change of absorbance intensity of UV-vis absorption spectra. The MoSe2-BC exhibited excellent electrochemical sensing performance for the detection of HP in wide linear ranges from 10 nM to 9.5 µM with a low limit of detection of 2 nM using differential pulse voltammetric method. An emerging machine learning technique is used to realize the intelligent sensing of HP, and the performance evaluation of regression analysis was selected to evaluate this technique. This work will provide a guidance for the preparation and application of biochar decorated graphene-like nanomaterials with the oxidase-like activity and the development of intelligent nanozyme sensing platform.


Subject(s)
Graphite , Pueraria , Charcoal , Hesperidin , Oxidoreductases
SELECTION OF CITATIONS
SEARCH DETAIL
...