Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 44(9): 5114-5124, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699829

ABSTRACT

Land use and climate change are the most important factors driving the change in ecosystem services (ESs). It is critical to understand the mechanisms behind such changes for improving ESs. However, there is still a lack of accurate understanding of change and dominant influencing factors of ESs in the agro-pastoral ecotone. This study took Naiman Banner, a typical farming pastoral ecotone in China, as the case study area. Based on the InVEST model, the revised wind erosion equation (RWEQ) and the revised universal soil loss equation (RUSLE) were used to calculate water yield, soil retention, and windbreak and sand-fixing in Naiman Banner in 2005 and 2015. Finally, the impacts of land use and climate change on these three ecosystem services were analyzed by using contribution rate formula, Pearson correlation coefficient, and geodetector methods. The results indicate that:① from 2005 to 2015, water yield and soil retention in Naiman Banner showed an overall upward trend, increasing by 22.41% and 6.74%, respectively, and windbreak and sand-fixing decreased by 66.24%. ② The change in water yield and windbreak and sand-fixing was mainly affected by climate change, and the change in soil retention was mainly affected by land use change. ③ Actual evapotranspiration change and land use change were the main factors affecting the spatial differentiation of water yield, with the explanatory powers of 94.50% and 50.05%, respectively. The main factors influencing the spatial differentiation of windbreak and sand-fixing were actual evapotranspiration change and land desertification degree, with the explanatory power of 19.84% and 16.15%, respectively. ④ The correlation of ESs in Naiman Banner was weak, and only windbreak and sand-fixing and water yield showed a weak significant synergy. Based on the results, we recommend that managers increase the proportion of grassland in sandy areas, implement closed management in pastoral areas, and introduce drip irrigation and other water-saving technologies in farmland, and ecological protection should continue to be given priority in city.

2.
Front Plant Sci ; 14: 1043807, 2023.
Article in English | MEDLINE | ID: mdl-36778674

ABSTRACT

Introduction: Net primary productivity (NPP) is an important indicator used to characterize the productivity of terrestrial ecosystems. The spatial distribution and dynamic change in NPP are closely related to regional climate, vegetation growth and human activities. Studying the spatiotemporal dynamics of NPP and its influencing factors plays a vital role in understanding ecosystem carbon sink capacity. Methods: Based on MODIS-NPP data, meteorological data, and land use data from 2000 to 2020, we analyzed the spatiotemporal variation characteristics and influencing factors of NPP in the middle reaches of the Yellow River (MRYR) by using unary linear regression analysis, third-order partial correlation analysis, and Sen+Mann-Kendall trend analysis. Results: The results showed that the annual average NPP of the MRYR was 319.24 gCm-2a-1 with a spatially decreasing trend from the southern part to the northern part. From 2000 to 2020, the annual average NPP experienced a fluctuating upward trend at a rate of 2.83 gCm-2a-1, and the area with a significant upward trend accounted for 87.68%. The NPP of different land use types differed greatly, in which forest had the greatest increase in NPP. Temperature had a negative correlation with NPP in most parts of the MRYR. Water vapor pressure promoted the accumulation of NPP in the northwestern MRYR. The areas with a positive correlation between NPP and water vapor pressure accounted for 87.6%, and 20.43% of the MRYR area passed the significance test of P< 0.05. Conclusion: The results of the study highlight the impact of climate factors and land-use changes on NPP and provide theoretical guidance for high-quality sustainable development in the MRYR.

3.
Sci Rep ; 11(1): 13379, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183703

ABSTRACT

Because of its high flooding tolerance, in recent years, mulberry has become a tree species that is used in plant restoration in impact zones in reservoir areas. Therefore, 3-year-old potted forage mulberry seedlings were used to investigate the mechanism of mulberry adaptation to flooding stress. An indoor simulated flooding method was adopted to study the morphology of mulberry seedling leaves and the changes in leaf chlorophyll fluorescence parameters and fluorescence imaging under different flooding times and depths. The results showed that the leaves of mulberry seedlings treated with shallow submergence remained healthy during the flooding period, while the leaves of mulberry seedlings treated with half submergence and full submergence showed different degrees of waterlogging symptoms in the middle and late flooding periods and formed adventitious roots at the base of the stem. Most of the chlorophyll fluorescence parameters decreased at the beginning of flooding, but the steady-state degree of closure of PS II reaction centres (1-qP_Lss) increased significantly. In the later stage of flooding, the fluorescence parameters showed relatively stable trends. Based on these results, we conclude that mulberry has high flooding tolerance due to a combination of morphological and physiological responses.


Subject(s)
Adaptation, Physiological/physiology , Chlorophyll/metabolism , Morus/metabolism , Morus/physiology , Plant Leaves/physiology , Seedlings/physiology , Water/metabolism , Floods , Fluorescence , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Roots/physiology , Seedlings/metabolism , Soil , Trees/metabolism , Trees/physiology
4.
Ying Yong Sheng Tai Xue Bao ; 16(8): 1531-6, 2005 Aug.
Article in Chinese | MEDLINE | ID: mdl-16262073

ABSTRACT

Facing the relative lag of forest ecosystem service and estimation in China, this paper proposed to quickly carry out the research on the evaluation of forest ecosystem service. On the basis of the classification of forest ecosystem types in China, the service of artificial and semi-artificial forest ecosystems was investigated, which was divided into eight types, i.e., timber and other products, recreation and eco-tourism, water storage, C fixation and O2 release, nutrient cycling, air quality purifying, erosion control, and habitat provision. According to the assessment index system for global ecosystem service proposed by Costanza et al., a series of assessment index system suitable for Chinese forest ecosystem service was set up, by which, the total value of forest ecosystem service in China was estimated to be 30 601.20 x 10(8) yuan x yr(-1), including direct and indirect economic value about 1 920.23 x 10(8) and 28 680.97 x 10(8) yuan x yr(-1), respectively. The indirect value was as 14.94 times as the direct one. The research aimed to bring natural resources and environment factors into the account system of national economy quickly, and to realize the green GDP at last, which would be helpful to realize sustainable development and environment protection.


Subject(s)
Conservation of Natural Resources/economics , Ecosystem , Environment , Trees/growth & development , China , Costs and Cost Analysis , Evaluation Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...