Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Heliyon ; 9(7): e17714, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37456058

ABSTRACT

More than one half melanoma patients have BRAF gene mutation. BRAF inhibitor vemurafenib is an effective medication for these patients. However, acquired resistance is generally inevitable, the mechanisms of which are not fully understood. Cell senescence and senescence-associated secretory phenotype (SASP) are involved in extensive biological functions. This study was designed to explore the possible role of senescent cells in vemurafenib resistance. The results showed that vemurafenib treatment induced BRAF-mutant but not wild-type melanoma cells into senescence, as manifested by positive ß-galactosidase staining, cell cycle arrest, enlarged cellular morphology, and cyclin D1/p-Rb pathway inhibition. However, the senescent cells induced by vemurafenib (SenV) did not display DNA damage response, p53/p21 pathway activation, reactive oxygen species accumulation, decline of mitochondrial membrane potential, or secretion of canonical SASP cytokines. Instead, SenV released other cytokines, including CCL2, TIMP2, and NGFR, to protect normal melanoma cells from growth inhibition upon vemurafenib treatment. Xenograft experiments further confirmed that vemurafenib induced melanoma cells into senescence in vivo. The results suggest that vemurafenib can induce robust senescence in BRAFV600E melanoma cells, leading to the release of resistance-conferring cytokines. Both the senescent cells and the resistant cytokines could be potential targets for tackling vemurafenib resistance.

2.
Anticancer Drugs ; 31(10): 1026-1037, 2020 11.
Article in English | MEDLINE | ID: mdl-32868647

ABSTRACT

Malignant melanoma is a kind of highly invasive and deadly diseases. The BRAF inhibitor (BRAFi) such as vemurafenib could achieve a high response rate in melanoma patients with BRAF mutation. However, melanoma cells could easily develop resistance as well as addiction to BRAFi. Based on the drug addiction, intermittent treatment has been proposed to select against BRAFi-resistant melanoma cells. Because different dosages of BRAFi might be used in patients, it is necessary to know about the relationship between drug dosage and the degree of addiction. To address the problem, four drug-resistant melanoma cell sublines (A375/R0.5, A375/R2.0, M14/R0.5 and M14/R2.0) were established by continuously exposure of melanoma A375 or M14 cells to 0.5 or 2.0 µM vemurafenib. Vemurafenib withdrawal resulted in much stronger suppression on clone formation in A375/R2.0 and M14/R2.0, compared with A375/R0.5 and M14/R0.5, respectively. Meanwhile, stronger upregulation of ERK1/2-FRA-1 pathway could be observed in A375/R2.0 and M14/R2.0. Further detection showed that some proinflammatory cytokines downstream of ERK1/2-FRA-1 pathway were upregulated after drug withdrawal, and the conditioned medium collected from the resistant A375 cells could inhibit clone formation. Furthermore, vemurafenib withdrawal resulted in suppressed cell proliferation rather than cell senescence, with stronger effect on A375/R2.0 compared with A375/R0.5. This study suggested that the depth of vemurafenib addiction in resistant melanoma cells is positively correlated to the drug dosage, which might be underpinned by the ERK1/2-FRA-1 pathway and the related cytokines.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Resistance, Neoplasm/drug effects , MAP Kinase Signaling System/drug effects , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Vemurafenib/administration & dosage , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Cytokines/metabolism , Dose-Response Relationship, Drug , Humans , Melanoma/metabolism , Melanoma/pathology , Proto-Oncogene Proteins c-fos/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Vemurafenib/pharmacology , Melanoma, Cutaneous Malignant
SELECTION OF CITATIONS
SEARCH DETAIL
...