Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 237: 113837, 2024 May.
Article in English | MEDLINE | ID: mdl-38508086

ABSTRACT

Ultra Violet radiations induced skin damage and associated skin disorders are a widespread concern. The consequences of sun exposure include a plethora of dermal conditions like aging, solar urticaria, albinism and cancer. Sunscreens provide effective protection to skin from these damages. Besides FDA approved physical and chemical UV filters, phytoconstituents with their multi functionalities are emerging as frontrunners in Therapy of skin disorders. Objective of this study was to develop novel phyto-dermal gel (PDG) with dual action of sun protection and antioxidant potential using polymeric mixed micelles (PMMs) are nanocarriers. PMMs of Pluronic F127 and Pluronic F68 loaded with curcumin and quercetin were optimized by 32 factorial designs. Responses studied were vesicle size, SPF, entrapment efficiency of curcumin and quercetin and antioxidant activity. Droplet size ranged from 300 to 500 nm with PDI in between 0.248 and 0.584. Combination of curcumin and quercetin showed enhanced sun protection and antioxidant activity. Pluronics played a significant positive role in various parameters. In present studies vesicle size of factorial batches was found to be between 387 and 527 nm, and SPF was found to be between 18.86 and 28.32. Transmission electron microscopy revealed spherical morphology of micelles. Optimized micelles were incorporated into Carbopol 940. Optimized PDG was evaluated for pH, drug content, spreadability, rheology, syneresis, ex vivo permeation, and skin retention. Hysteresis loop in the rheogram suggested thixotropy of PDG. Syneresis for gels from day 0-30 days was found to be between 0% and 12.46% w/w. SPF of optimized PDG was 27±0.5. Optimized PDG showed no signs of erythema and edema on Wistar rats. PMMs thus effectively enhanced antioxidant and skin protective effect of curcumin and quercetin.


Subject(s)
Cosmeceuticals , Curcumin , Rats , Animals , Micelles , Curcumin/pharmacology , Curcumin/chemistry , Antioxidants/pharmacology , Quercetin/pharmacology , Rats, Wistar , Poloxamer/chemistry , Polymers/chemistry , Gels , Drug Carriers/chemistry , Particle Size
2.
AAPS PharmSciTech ; 24(5): 109, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37100968

ABSTRACT

Mixed polymeric micelles are potential nanocarriers for topical drug delivery. Dapsone (DAP) is an antibacterial used as anti-acne agent, but challenged by low water solubility and poor skin permeability. In the present study, DAP-loaded mixed micellar gel was developed comprising Pluronics F-68 and F-127. Micelles were prepared by solvent evaporation method and particle size, ex vivo permeation, drug loading, and entrapment efficiency were determined. Central Composite Design was used to optimize formulation. Independent variables were concentration of Pluronics at three levels while micelle size and drug loading capacities were dependent variables. Droplet size ranged from 400 to 500 nm. Transmission electron microscopy revealed spherical morphology of micelles. Optimized micelles were incorporated into gel base using HPMC K100M, Sodium CMC, and Carbopol 980 as gelling agents. Gels were evaluated for pH, drug content, spreadability, rheology, syneresis, ex vivo permeation, and subacute dermal toxicity. Compared with solubility of free DAP (0.24+0.056 µg/ml), solubility in mixed micelles was 18.42±3.4 µg/ml in water at room temperature. Order of spreadability of gels was Na CMC < HPMC < Carbopol 980. Carbopol gels displayed thixotropy with index of 3.17. Syneresis for all gels from day 0 to day 30 was found to be in range of 4.2 to 15.6% w/w. Subacute dermal toxicity studies showed no signs of erythema and edema on rat skin until 21 days. These results suggest that mixed micelles can significantly increase solubility and permeability and sustain release of DAP and are suitable carriers for topical DAP delivery in anti-acne therapies.


Subject(s)
Acne Vulgaris , Micelles , Rats , Animals , Dapsone , Drug Carriers/chemistry , Poloxamer/chemistry , Acne Vulgaris/drug therapy , Gels/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...