Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Hum Factors ; 9(1): e27689, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34994697

ABSTRACT

BACKGROUND: Patients with chronic pain face several challenges in using clinical tools to help them monitor, understand, and make meaningful decisions about their pain conditions. Our group previously presented data on Painimation, a novel electronic tool for communicating and assessing pain. OBJECTIVE: This paper describes the human-centered design and development approach (inspiration, ideation, and implementation) that led to the creation of Painimation. METHODS: We planned an iterative and cyclical development process that included stakeholder engagement and feedback from users. Stakeholders included patients with acute and chronic pain, health care providers, and design students. Target users were adults with acute or chronic pain who needed clinical assessment and tracking of the course of their pain over time. Phase I (inspiration) consisted of empathizing with users, understanding how patients experience pain, and identifying the barriers to accurately expressing and assessing pain. This phase involved understanding how patients communicate pain symptoms to providers, as well as defining limitations of current models of clinical pain assessment tools. In Phase II (ideate) we conceptualized and evaluated different approaches to expressing and assessing pain. The most promising concept was developed through an iterative process that involved end users and stakeholders. In Phase III (implementation), based on stakeholder feedback from initial designs and prototypes of abstract pain animations (painimations), we incorporated all concepts to test a minimally viable product, a fully functioning pain assessment app. We then gathered feedback through an agile development process and applied this feedback to finalizing a testable version of the app that could ultimately be used in a pain clinic. RESULTS: Engaging intended users and stakeholders in an iterative, human-centered design process identified 5 criteria that a pain assessment tool would need to meet to be effective in the medical setting. These criteria were used as guiding design principles to generate a series of pain assessment concept ideas. This human-centered approach generated 8 highly visual painimations that were found to be acceptable and useable for communicating pain with medical providers, by both patients with general pain and patients with sickle cell disease (SCD). While these initial steps continued refinement of the tool, further data are needed. Agile development will allow us to continue to incorporate precision medicine tools that are validated in the clinical research arena. CONCLUSIONS: A multiphase, human-centered design approach successfully resulted in the development of an innovation that has potential to improve the quality of medical care, particularly for underserved populations. The use of Painimation may especially benefit the medical care of minority populations with chronic and difficult-to-treat pain, such as adults with SCD. The insights generated from this study can be applied to the development of patient-reported outcomes tools that are more patient-centered, engaging, and effective.

2.
J Med Internet Res ; 20(8): e10056, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30076127

ABSTRACT

BACKGROUND: Pain is the most common physical symptom requiring medical care, yet the current methods for assessing pain are sorely inadequate. Pain assessment tools can be either too simplistic or take too long to complete to be useful for point-of-care diagnosis and treatment. OBJECTIVE: The aim was to develop and test Painimation, a novel tool that uses graphic visualizations and animations instead of words or numeric scales to assess pain quality, intensity, and course. This study examines the utility of abstract animations as a measure of pain. METHODS: Painimation was evaluated in a chronic pain medicine clinic. Eligible patients were receiving treatment for pain and reported pain more days than not for at least 3 months. Using a tablet computer, participating patients completed the Painimation instrument, the McGill Pain Questionnaire (MPQ), and the PainDETECT questionnaire for neuropathic symptoms. RESULTS: Participants (N=170) completed Painimation and indicated it was useful for describing their pain (mean 4.1, SE 0.1 out of 5 on a usefulness scale), and 130 of 162 participants (80.2%) agreed or strongly agreed that they would use Painimation to communicate with their providers. Animations selected corresponded with pain adjectives endorsed on the MPQ. Further, selection of the electrifying animation was associated with self-reported neuropathic pain (r=.16, P=.03), similar to the association between neuropathic pain and PainDETECT (r=.17, P=.03). Painimation was associated with PainDETECT (r=.35, P<.001). CONCLUSIONS: Using animations may be a faster and more patient-centered method for assessing pain and is not limited by age, literacy level, or language; however, more data are needed to assess the validity of this approach. To establish the validity of using abstract animations ("painimations") for communicating and assessing pain, apps and other digital tools using painimations will need to be tested longitudinally across a larger pain population and also within specific, more homogenous pain conditions.


Subject(s)
Medical Informatics/methods , Pain Measurement/methods , Pain/diagnosis , Communication , Cross-Sectional Studies , Feasibility Studies , Female , Humans , Male , Middle Aged , Pain/pathology , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...