Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 15(3): 474-485, 2021 06.
Article in English | MEDLINE | ID: mdl-34232891

ABSTRACT

Transcutaneous monitoring is a noninvasive method to continuously measure the partial pressures of oxygen and carbon dioxide that diffuse through the skin and correlate closely with changes in blood gases. However, the contemporary commercially available electrochemical-based technology requires a heating mechanism and a bulky, corded, and expensive sensing unit. This study aims to demonstrate a prototype noninvasive, miniaturized monitor that uses luminescence-based technology to measure the partial pressure of transcutaneous oxygen, a surrogate of the partial pressure of arterial oxygen. To be able to build a robust measurement system, we conducted experiments to understand the temperature and humidity dependence of oxygen-sensitive platinum-porphyrin films. We performed a detailed analysis of both intensity and lifetime measurement techniques. To verify the performance, we tested the prototype in a small ex-vivo experiment involving three healthy human volunteers. We measured variations in the partial pressure of transcutaneous oxygen values due to pressure-induced arterial and venous occlusions on the volunteers' fingertips. The system resolves changes in the partial pressure of oxygen from 0 to 418 mmHg in the lab bench-top testing, covering the medically relevant range of 50-150 mmHg. Under fixed humidity, temperature, and the partial pressure of oxygen conditions, the sensor shows a 2% drift over 60 hours. The prototype consumes 9 mW of power from a 2.2 V external DC power supply.


Subject(s)
Carbon Dioxide , Oxygen , Humans , Monitoring, Physiologic , Partial Pressure , Skin
2.
Chemphyschem ; 20(5): 773-784, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30370996

ABSTRACT

We have applied density functional theory to study the electronic structure changes caused by Nb incorporation in BiVO4 and the application of external pressure. The overall solubility of Nb in BiVO4 is usually high, and the presence of oxygen vacancies affect the dopability of Nb in BiVO4 . Through the analyses of the chemical-potential landscape, we have determined the single-phase stability zone of BiVO4 with the Nb doping. The most favorable Nb doping is simultaneous substitutions at both V- and Bi-sites. Even though Nb substitution at only V-site is next favorable, the band gap change is not very significant which agrees with an earlier experiment. However, it does change the electron effective mass by 20 % owing to the presence of Nb 4d bands in the conduction bands, which explains better catalytic activity by Nb-doped BiVO4 . In addition, application of external pressure the single-phase stability zone in the chemical-potential landscape. We have also focused on the local structural distortions near the Nb doping site, especially on the BiO8 octahedra. We have shown here that pressure-induced symmetrization of BiO8 dodecahedron lowers the electron's effective mass further and therefore can help to improve the photoconduction property of BiVO4 .

3.
ACS Appl Mater Interfaces ; 9(13): 11356-11362, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28326767

ABSTRACT

The performance of BiVO4 photoanodes, especially under front-side illumination, is limited by the modest charge transport properties of BiVO4. Core/shell nanostructures consisting of BiVO4 coated onto a conductive scaffold are a promising route to improving the performance of BiVO4-based photoanodes. Here, we investigate photoanodes composed of thin and uniform layers of BiVO4 particles coated onto Sb-doped SnO2 (Sb:SnO2) nanotube arrays that were synthesized using a sacrificial ZnO template with controllable length and packing density. We demonstrate a new record for the product of light absorption and charge separation efficiencies (ηabs × Î·sep) of ∼57.3 and 58.5% under front- and back-side illumination, respectively, at 0.6 VRHE. Moreover, both of these high ηabs × Î·sep efficiencies are achieved without any extra treatment or intentional doping in BiVO4. These results indicate that integration of Sb:SnO2 nanotube cores with other successful strategies such as doping and hydrogen treatment can increase the performance of BiVO4 and related semiconductors closer to their theoretical potential.

4.
ACS Appl Mater Interfaces ; 9(2): 1459-1470, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27991759

ABSTRACT

Metal oxides with moderate band gaps are desired for efficient production of hydrogen from sunlight and water via photoelectrochemical (PEC) water splitting. Here, we report an α-SnWO4 photoanode synthesized by hydrothermal conversion of WO3 films that achieves photon to current conversion at wavelengths up to 700 nm (1.78 eV). This photoanode is promising for overall PEC water-splitting because the flat-band potential and voltage of photocurrent onset are more negative than the potential of hydrogen evolution. Furthermore, the photoanode utilizes a large portion of the solar spectrum. However, the photocurrent density reaches only a small fraction of that which is theoretically possible. Density functional theory based thermodynamic and electronic structure calculations were performed to elucidate the nature and impact of defects in α-SnWO4 prepared by this synthetic route, from which hole localization at Sn-at-W antisite defects was determined to be a likely cause for the poor photocurrent. Measurements further showed that the photocurrent decreases over time due to surface oxidation, which was suppressed by improving the kinetics of hole transfer at the semiconductor/electrolyte interface. Alternative synthetic methods and the addition of protective coatings and/or oxygen evolution catalysts are suggested to improve the PEC performance and stability of this promising α-SnWO4 material.

5.
Sci Rep ; 6: 27832, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27271194

ABSTRACT

Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20-60 nm and lengths of 4-6 µm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications.

6.
Nano Lett ; 16(6): 3463-74, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27203779

ABSTRACT

BiVO4 has become the top-performing semiconductor among photoanodes for photoelectrochemical water oxidation. However, BiVO4 photoanodes are still limited to a fraction of the theoretically possible photocurrent at low applied voltages because of modest charge transport properties and a trade-off between light absorption and charge separation efficiencies. Here, we investigate photoanodes composed of thin layers of BiVO4 coated onto Sb-doped SnO2 (Sb:SnO2) nanorod-arrays (Sb:SnO2/BiVO4 NRAs) and demonstrate a high value for the product of light absorption and charge separation efficiencies (ηabs × Î·sep) of ∼51% at an applied voltage of 0.6 V versus the reversible hydrogen electrode, as determined by integration of the quantum efficiency over the standard AM 1.5G spectrum. To the best of our knowledge, this is one of the highest ηabs × Î·sep efficiencies achieved to date at this voltage for nanowire-core/BiVO4-shell photoanodes. Moreover, although WO3 has recently been extensively studied as a core nanowire material for core/shell BiVO4 photoanodes, the Sb:SnO2/BiVO4 NRAs generate larger photocurrents, especially at low applied voltages. In addition, we present control experiments on planar Sb:SnO2/BiVO4 and WO3/BiVO4 heterojunctions, which indicate that Sb:SnO2 is more favorable as a core material. These results indicate that integration of Sb:SnO2 nanorod cores with other successful strategies such as doping and coating with oxygen evolution catalysts can move the performance of BiVO4 and related semiconductors closer to their theoretical potential.

7.
Phys Chem Chem Phys ; 16(24): 12299-306, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24820239

ABSTRACT

Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.

8.
Nano Lett ; 14(2): 1099-105, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24437363

ABSTRACT

We report a scalably synthesized WO3/BiVO4 core/shell nanowire photoanode in which BiVO4 is the primary light-absorber and WO3 acts as an electron conductor. These core/shell nanowires achieve the highest product of light absorption and charge separation efficiencies among BiVO4-based photoanodes to date and, even without an added catalyst, produce a photocurrent of 3.1 mA/cm(2) under simulated sunlight and an incident photon-to-current conversion efficiency of ∼ 60% at 300-450 nm, both at a potential of 1.23 V versus RHE.

9.
Nano Lett ; 13(9): 4362-8, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23919596

ABSTRACT

An electroassisted method is developed to transfer silicon (Si) wire arrays from the Si wafers on which they are grown to other substrates while maintaining their original properties and vertical alignment. First, electroassisted etching is used to form a sacrificial porous Si layer underneath the Si wires. Second, the porous Si layer is separated from the Si wafer by electropolishing, enabling the separation and transfer of the Si wires. The method is further expanded to develop a current-induced metal-assisted chemical etching technique for the facile and rapid synthesis of Si nanowires with axially modulated porosity.


Subject(s)
Nanotechnology , Nanowires/chemistry , Silicon/chemistry , Crystallization , Electronics , Porosity , Surface Properties
10.
Nanoscale Res Lett ; 8(1): 347, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23924299

ABSTRACT

Heterostructured nanowires, such as core/shell nanowires and nanoparticle-decorated nanowires, are versatile building blocks for a wide range of applications because they integrate dissimilar materials at the nanometer scale to achieve unique functionalities. The sol-flame method is a new, rapid, low-cost, versatile, and scalable method for the synthesis of heterostructured nanowires, in which arrays of nanowires are decorated with other materials in the form of shells or chains of nanoparticles. In a typical sol-flame synthesis, nanowires are dip-coated with a solution containing precursors of the materials to be decorated, then dried in air, and subsequently heated in the post-flame region of a flame at high temperature (over 900°C) for only a few seconds. Here, we report the effects of the precursor solution on the final morphology of the heterostructured nanowire using Co3O4 decorated CuO nanowires as a model system. When a volatile cobalt salt precursor is used with sufficient residual solvent, both solvent and cobalt precursor evaporate during the flame annealing step, leading to the formation of Co3O4 nanoparticle chains by a gas-solid transition. The length of the nanoparticle chains is mainly controlled by the temperature of combustion of the solvent. On the other hand, when a non-volatile cobalt salt precursor is used, only the solvent evaporates and the cobalt salt is converted to nanoparticles by a liquid-solid transition, forming a conformal Co3O4 shell. This study facilitates the use of the sol-flame method for synthesizing heterostructured nanowires with controlled morphologies to satisfy the needs of diverse applications.

11.
Nat Commun ; 4: 1723, 2013.
Article in English | MEDLINE | ID: mdl-23591890

ABSTRACT

Recent density-functional theory calculations suggest that codoping TiO2 with donor-acceptor pairs is more effective than monodoping for improving photoelectrochemical water-splitting performance because codoping can reduce charge recombination, improve material quality, enhance light absorption and increase solubility limits of dopants. Here we report a novel ex-situ method to codope TiO2 with tungsten and carbon (W, C) by sequentially annealing W-precursor-coated TiO2 nanowires in flame and carbon monoxide gas. The unique advantages of flame annealing are that the high temperature (>1,000 °C) and fast heating rate of flame enable rapid diffusion of W into TiO2 without damaging the nanowire morphology and crystallinity. This is the first experimental demonstration that codoped TiO2:(W, C) nanowires outperform monodoped TiO2:W and TiO2:C and double the saturation photocurrent of undoped TiO2 for photoelectrochemical water splitting. Such significant performance enhancement originates from a greatly improved electrical conductivity and activity for oxygen-evolution reaction due to the synergistic effects of codoping.

12.
Nano Lett ; 13(3): 855-60, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-22494023

ABSTRACT

The hybrid structure of nanoparticle-decorated nanowires (NP@NW) combines the merits of large specific surface areas for NPs and anisotropic properties for NWs and is a desirable structure for applications including batteries, dye-sensitized solar cells, photoelectrochemical water splitting, and catalysis. Here, we report a novel sol-flame method to synthesize the NP@NW hybrid structure with two unique characteristics: (1) large loading of NPs per NW with the morphology of NP chains fanning radially from the NW core and (2) intimate contact between NPs and NWs. Both features are advantageous for the above applications that involve both surface reactions and charge transport processes. Moreover, the sol-flame method is simple and general, with which we have successfully decorated various NWs with binary/ternary metal oxide and even noble metal NPs. The unique aspects of the sol-flame method arise from the ultrafast heating rate and the high temperature of flame, which enables rapid solvent evaporation and combustion, and the combustion gaseous products blow out NPs as they nucleate, forming the NP chains around NWs.

13.
Nanoscale Res Lett ; 7(1): 554, 2012 Oct 06.
Article in English | MEDLINE | ID: mdl-23039084

ABSTRACT

The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.

14.
Nano Lett ; 11(11): 4978-84, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21999403

ABSTRACT

We report a hierarchically branched TiO(2) nanorod structure that serves as a model architecture for efficient photoelectrochemical devices as it simultaneously offers a large contact area with the electrolyte, excellent light-trapping characteristics, and a highly conductive pathway for charge carrier collection. Under Xenon lamp illumination (UV spectrum matched to AM 1.5G, 88 mW/cm(2) total power density), the branched TiO(2) nanorod array produces a photocurrent density of 0.83 mA/cm(2) at 0.8 V versus reversible hydrogen electrode (RHE). The incident photon-to-current conversion efficiency reaches 67% at 380 nm with an applied bias of 0.6 V versus RHE, nearly two times higher than the bare nanorods without branches. The branches improve efficiency by means of (i) improved charge separation and transport within the branches due to their small diameters, and (ii) a 4-fold increase in surface area which facilitates the hole transfer at the TiO(2)/electrolyte interface.


Subject(s)
Hydrogen/chemistry , Nanostructures/chemistry , Nanostructures/radiation effects , Titanium/chemistry , Titanium/radiation effects , Electromagnetic Fields , Hydrogen/isolation & purification , Light , Materials Testing , Nanostructures/ultrastructure
15.
Nano Lett ; 11(6): 2390-5, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21563788

ABSTRACT

Single crystal γ-Fe(2)O(3) nanowires with 40-60 nm diameters were grown for the first time by single-step atmospheric flame vapor deposition (FVD) with axial growth rates up to 5 µm/minute. Because of their superior crystallinity, these FVD γ-Fe(2)O(3) nanowires are single magnetic domains with room temperature coercivities of 200 Oe and saturation magnetizations of 68 emu/g.


Subject(s)
Ferric Compounds/chemistry , Ferric Compounds/chemical synthesis , Magnetics , Nanowires/chemistry , Particle Size , Surface Properties , Volatilization
16.
Nano Lett ; 11(2): 872-7, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21261293

ABSTRACT

We report an atmospheric, catalyst-free, rapid flame synthesis technique for growing single, branched, and flower-like α-MoO(3) nanobelt arrays on diverse substrates. The growth rate, morphology, and surface coverage density of the α-MoO(3) nanobelts were controlled by varying the flame equivalence ratio, the source temperature, the growth substrate temperature, and the material and morphology of the growth substrate. This flame synthesis technique is a promising, alternative way to synthesize one-dimensional metal oxide nanostructures in general.


Subject(s)
Crystallization/methods , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Oxides/chemical synthesis , Hot Temperature , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Molybdenum , Particle Size , Surface Properties
17.
Nano Lett ; 9(8): 3001-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19588968

ABSTRACT

This paper describes a simple and yet rapid flame synthesis method to produce one-dimensional metal oxide nanostructures by directly oxidizing metals in the postflame region of a flat flame. Single and bicrystal alpha-Fe(2)O(3) nanoflakes and CuO nanoneedles were grown in the postflame region by a solid diffusion mechanism and were aligned perpendicularly to the substrate with a surface coverage density of 10 nanostructures per square micrometer. The alpha-Fe(2)O(3) nanoflakes reached lengths exceeding 20 microm after only 20 min of growth. This rapid growth rate is attributed to a large initial heating rate of the metal substrate in the flame and to the presence of water vapor and carbon dioxide in the gas phase that together generate thin and porous oxide layers that greatly enhance the diffusion of the deficient metal to the nanostructure growth site and enable growth at higher temperatures than previously demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...