Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 3(4): 510-23, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18320563

ABSTRACT

Success in experiments and/or technology mainly depends on a properly designed process or product. The traditional method of process optimization involves the study of one variable at a time, which requires a number of combinations of experiments that are time, cost and labor intensive. The Taguchi method of design of experiments is a simple statistical tool involving a system of tabulated designs (arrays) that allows a maximum number of main effects to be estimated in an unbiased (orthogonal) fashion with a minimum number of experimental runs. It has been applied to predict the significant contribution of the design variable(s) and the optimum combination of each variable by conducting experiments on a real-time basis. The modeling that is performed essentially relates signal-to-noise ratio to the control variables in a 'main effect only' approach. This approach enables both multiple response and dynamic problems to be studied by handling noise factors. Taguchi principles and concepts have made extensive contributions to industry by bringing focused awareness to robustness, noise and quality. This methodology has been widely applied in many industrial sectors; however, its application in biological sciences has been limited. In the present review, the application and comparison of the Taguchi methodology has been emphasized with specific case studies in the field of biotechnology, particularly in diverse areas like fermentation, food processing, molecular biology, wastewater treatment and bioremediation.


Subject(s)
Algorithms , Biotechnology/methods , Data Interpretation, Statistical , Models, Biological , Models, Statistical , Software , Computer Simulation , Technology Assessment, Biomedical
2.
Extremophiles ; 12(3): 375-81, 2008 May.
Article in English | MEDLINE | ID: mdl-18305897

ABSTRACT

Twenty-five psychrophilic yeasts were isolated from the soil of Roopkund Lake, Himalayas, India. Two colony morphotypes were identified and representatives of 'morphotype 1' were identified as Cryptococcus gastricus. Representatives of 'morphotype 2', namely 3AT, 4A, 4B and Rup4B, showed similar phenotypic properties and are identical with respect to the nucleotide sequence of the ITS1-5.8S rRNA gene-ITS2 region and D1/D2 domain of the 26S rRNA gene. The sequence of D1/D2 domain of 3AT shows 97.6-98.8% similarity with Rhodotorula psychrophila CBS10440T, Rhodotorula glacialis CBS10437T and Rhodotorula psychrophenolica CBS10438T and in the neighbour-joining phylogenetic tree strains; 3AT, 4A, 4B and Rup4B form a cluster with Rhodotorula glacialis and Rhodotorula psychrophila. Strains 3AT, 4A, 4B and Rup4B also differ from their nearest phylogenetic relatives in several biochemical characteristics such as in assimilation of D-galactose, L-sorbose, maltose, citrate, D-glucuronate and creatinine. Thus, based on the phylogenetic analysis and the phenotypic differences 3AT, 4A, 4B and Rup 4B are assigned the status of a new species of Rhodotorula for which the name Rhodotorula himalayensis sp. nov. is proposed with 3AT as the type strain (=CBS10539T =MTCC8336T).


Subject(s)
Rhodotorula/classification , Rhodotorula/isolation & purification , Soil Microbiology , DNA, Fungal/analysis , DNA, Ribosomal/analysis , Energy Metabolism , Fresh Water , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Hydrogen-Ion Concentration , India , Molecular Sequence Data , Peptide Hydrolases/metabolism , Phenotype , Phylogeny , RNA, Fungal , RNA, Ribosomal , RNA, Ribosomal, 5.8S , Rhodotorula/enzymology , Rhodotorula/genetics , Rhodotorula/growth & development , Temperature
3.
FEMS Yeast Res ; 8(3): 492-8, 2008 May.
Article in English | MEDLINE | ID: mdl-18284448

ABSTRACT

Asporogenus yeast strains W113AT and W113B were isolated from the intestine of a dead Trinket snake. The two isolates showed 100% sequence similarity in the D1/D2 domain of the large-subunit (LSU) rRNA gene, internal transcribed spacer (ITS) 1-5.8S rRNA gene-ITS2 region and mitochondrial small-subunit rRNA gene and the cytochrome oxidase II gene sequence and also showed similar phenotypic characteristics. The nearest phylogenetic neighbors of W113AT and W113B based on the sequence of the D1/D2 domain of the LSU rRNA gene were Blastobotrys chiropterorum NRRL Y-17017T and Blastobotrys terrestris NRRL Y-17704T with about 98% similarity. The close affiliation of W113AT and W113B with B. chiropterorum NRRL Y-17017T and B. terrestris NRRL Y-17704T was also evident from the high similarity observed in the nucleotide sequences of the mitochondrial small subunit rRNA (96-97.8%) and the cytochrome oxidase II (95.5-95.6%) genes. In the neighbor-joining phylogenetic trees constructed based on the D1/D2 domain or cytochrome oxidase gene, the isolates clustered with the above-mentioned species. However, the isolates showed a number of differences in their phenotypic properties with B. chiropterorum NRRL Y-17017T and B. terrestris NRRL Y-17704T and hence are regarded as representing a novel member of the genus Blastobotrys, for which the name Blastobotrys serpentis sp. nov. is proposed.


Subject(s)
Colubridae/microbiology , Intestines/microbiology , Saccharomycetales/isolation & purification , Animals , Phylogeny , Saccharomycetales/classification
4.
FEMS Yeast Res ; 7(3): 489-93, 2007 May.
Article in English | MEDLINE | ID: mdl-17253980

ABSTRACT

Three ascomycetous yeast strains were isolated from decaying green wine grapes, collected from Hyderabad city in India. Two strains, YS9 and YS21, were identified as Kodamaea ohmeri and Candida fermentati, respectively. The third strain, YS12(T), differs from Candida parapsilosis, Candida orthopsilosis and Candida metapsilosis, the nearest phylogenetic neighbours, by 1.6-1.9% with respect to the nucleotide sequence of the D1/D2 domain of the 26S rRNA gene and by 1.4-9.2% with respect to the nucleotide sequence of the internal transcribed spacer 1 (ITS1)-5.8S rRNA gene-ITS2 region. YS12(T) also differs from C. parapsilosis, C. metapsilosis and C. orthopsilosis by some phenotypic characteristics. Thus, based on the phenotypic differences and phylogenetic analysis, strain YS12(T) is assigned the status of a new species of Candida, for which the name C. hyderabadensis sp. nov. is proposed. The type strain is YS12(T) (NRRL Y-27953(T)=CBS10444(T)=IAM15334(T)).


Subject(s)
Candida/isolation & purification , Vitis/microbiology , Base Sequence , Candida/genetics , Candida/metabolism , Candida/ultrastructure , Cryoelectron Microscopy , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 5.8S/chemistry , RNA, Ribosomal, 5.8S/genetics , Sequence Alignment , Wine
5.
J Microbiol ; 44(1): 113-20, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16554726

ABSTRACT

Candida tropicalis was treated with ultraviolet (UV) rays, and the mutants obtained were screened for xylitol production. One of the mutants, the UV1 produced 0.81 g of xylitol per gram of xylose. This was further mutated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and the mutants obtained were screened for xylitol production. One of the mutants (CT-OMV5) produced 0.85 g/g of xylitol from xylose. Xylitol production improved to 0.87 g/g of xylose with this strain when the production medium was supplemented with urea. The CT-OMV5 mutant strain differs by 12 tests when compared to the wild-type Candida tropicalis strain. The XR activity was higher in mutant CT-OMV5. The distinct difference between the mutant and wild-type strain is the presence of numerous chlamydospores in the mutant. In this investigation, we have demonstrated that mutagenesis was successful in generating a superior xylitol-producing strain, CT-OMV5, and uncovered distinctive biochemical and physiological characteristics of the wild-type and mutant strain, CT-OMV5.


Subject(s)
Candida tropicalis/metabolism , Methylnitronitrosoguanidine/pharmacology , Mutagenesis , Ultraviolet Rays , Xylitol/biosynthesis , Biotechnology/methods , Candida tropicalis/enzymology , Candida tropicalis/genetics , Candida tropicalis/growth & development , Culture Media , Fermentation , Mutation , Xylose/metabolism
6.
J Microbiol ; 43(1): 38-43, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15765056

ABSTRACT

Lactic acid production parameter optimization using Lactobacillus amylovorus NRRL B-4542 was performed using the design of experiments (DOE) available in the form of an orthogonal array and a software for automatic design and analysis of the experiments, both based on Taguchi protocol. Optimal levels of physical parameters and key media components namely temperature, pH, inoculum size, moisture, yeast extract, MgSO4 . 7H20, Tween 80, and corn steep liquor (CSL) were determined. Among the physical parameters, temperature contributed higher influence, and among media components, yeast extract, MgSO4 . 7H20, and Tween 80 played important roles in the conversion of starch to lactic acid. The expected yield of lactic acid under these optimal conditions was 95.80% and the actual yield at optimum conditions was 93.50%.


Subject(s)
Lactic Acid/biosynthesis , Lactobacillus acidophilus/metabolism , Bacteriological Techniques , Culture Media , Fermentation , Hydrogen-Ion Concentration , Starch/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...