Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672467

ABSTRACT

Functionalized carbon nanotube (FCNT) and Manganese Oxide (MnO2) nanoflower hybrid material was synthesized using hydrothermal technique as a promising electrode material for supercapacitor applications. The morphological investigation revealed the formation of 'nanoflower' like structure of MnO2 connected with FCNT, thus paving an easy path for the conduction of electrons during the electrochemical mechanism. A significant improvement in capacitance properties was observed in the hybrid material, in which carbon nanotube acts as a conducting cylindrical path, while the major role of MnO2 was to store the charge, acting as an electrolyte reservoir leading to an overall improved electrochemical performance. The full cell electrochemical analysis of FCNT-MnO2 hybrid using 3 M potassium hydroxide (KOH) electrolyte indicated a specific capacitance of 359.53 F g-1, specific energy of 49.93 Wh kg-1 and maximum specific power of 898.84 W kg-1 at 5 mV s-1. The results show promise for the future of supercapacitor development based on hybrid electrode materials, where high specific energy can be achieved along with high specific power and long cycle life.

2.
Nanoscale Adv ; 3(16): 4834-4842, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-36134311

ABSTRACT

Phosphorus (P) is a limiting macronutrient that regulates plant growth and development based on the bioavailability of its inorganic form, i.e., orthophosphate (Pi). P plays a critical role in cell development, and it is a key component of ATP, DNA, lipids, and cell signaling machinery. Without the exogenous application of P fertilizers, the yield of crops will not meet the ever-growing demand in today's world. However, due to the non-renewable nature of natural P reserves and simultaneous rapid human population growth, food crops must be ultimately produced more than ever by using a lower P fertilizer input. Hence, the strategy of preparing nano-fertilizers was conceptualized and demonstrated with great success. For example, nano-diammonium phosphate (n-DAP) performed far better than the commercial granular DAP (c-DAP). However, nano-fertilizers, including n-DAP, cannot be produced on a large scale using the available processing methods. Herein, a novel processing strategy, namely cryo-milling, is demonstrated to prepare n-DAP on a kg-scale without altering DAP's bonding structure. Cryo-milling involves milling at liquid N2 temperatures and therefore helps in brittle fracture of coarser DAP particles into n-DAP particles. Cryo-milled n-DAP, with particle size ∼5000 times smaller but specific surface area ∼14 000 times greater than that of c-DAP, enhanced the growth of monocot (wheat) and dicot (tomato) plants due to improved bioavailability of Pi even for a far lower input than c-DAP. Phenotypic observations such as higher leaf biomass, longer shoots, shorter roots, and less anthocyanin pigmentation manifested the extraordinary efficacy of cryo-milled n-DAP for 75% lower input than c-DAP.

SELECTION OF CITATIONS
SEARCH DETAIL
...