Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 310: 136826, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36243087

ABSTRACT

This study aimed to carry out the bioaugmentation of crude oil/motor oil contaminated soil. The mixture of novel strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4 were used in this bioaugmentation studies. The four different bioaugmentation systems (BS 1-4) were carried out in this experiment labelled as BS 1 (Crude oil contaminated soil), BS 2 (BS 1 + bacterial consortia), BS 3 (Motor oil sludge contaminated soil), and BS 4 (BS 3 + bacterial consortia). The total petroleum hydrocarbon (TPH) was investigated for monitor the effectiveness of bioaugmentation process. The highest TPH removal rate was recorded on BS 4 (9091 mg Kg -1) was about 67% followed by 52% on BS 2 (8584 mg Kg -1) respectively. The percentage of biodegradation efficiency (BE) of residual crude and motor oil contaminated soil were evaluated by GCMS analysis and the results showed that 65% (BS 2) and 83% (BS 4) respectively. Further the bioaugmented soil was subjected to the plant cultivation (Lablab purpureus) and the results revealed that the L. purpureus was rapidly grown in the systems BS 4 and BS 2 than the system BS 1 and BS 2 which was due to the lesser biodegradation of the crude oil contents. In resultant, it can be concluded that the soil was suitable for the cultivation of plant. Overall, this study revealed that the selected bacterial consortia were effectively degraded the hydrocarbon and act as a potential bioremediator in the hydrocarbon polluted soil in a short period.


Subject(s)
Petroleum , Soil Pollutants , Petroleum/metabolism , Soil/chemistry , Pseudomonas/metabolism , Soil Pollutants/analysis , Soil Microbiology , Hydrocarbons/metabolism , Biodegradation, Environmental , Bacteria/metabolism
3.
Mol Cancer ; 21(1): 83, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35331236

ABSTRACT

BACKGROUND: Cancer is caused by a combination of genetic and epigenetic abnormalities. Current cancer therapies are limited due to the complexity of their mechanism, underlining the need for alternative therapeutic approaches. Interestingly, combining the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system with next-generation sequencing (NGS) has the potential to speed up the identification, validation, and targeting of high-value targets. MAIN TEXT: Personalized or precision medicine combines genetic information with phenotypic and environmental characteristics to produce healthcare tailored to the individual and eliminates the constraints of "one-size-fits-all" therapy. Precision medicine is now possible thanks to cancer genome sequencing. Having advantages over limited sample requirements and the recent development of biomarkers have made the use of NGS a major leap in personalized medicine. Tumor and cell-free DNA profiling using NGS, proteome and RNA analyses, and a better understanding of immunological systems, are all helping to improve cancer treatment choices. Finally, direct targeting of tumor genes in cancer cells with CRISPR/Cas9 may be achievable, allowing for eliminating genetic changes that lead to tumor growth and metastatic capability. CONCLUSION: With NGS and CRISPR/Cas9, the goal is no longer to match the treatment for the diagnosed tumor but rather to build a treatment method that fits the tumor exactly. Hence, in this review, we have discussed the potential role of CRISPR/Cas9 and NGS in advancing personalized medicine.


Subject(s)
Neoplasms , Precision Medicine , CRISPR-Cas Systems , Gene Editing/methods , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/genetics , Neoplasms/therapy
4.
Molecules ; 26(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34299494

ABSTRACT

In this article, a zirconia-based nano-catalyst (Nano-ZrO2), with intermolecular C-N bond formation for the synthesis of various benzimidazole-fused heterocycles in a concise method is reported. The robustness of this reaction is demonstrated by the synthesis of a series of benzimidazole drugs in a one-pot method. All synthesized materials were characterized using 1HNMR, 13CNMR, and LC-MS spectroscopy as well as microanalysis data. Furthermore, the synthesis of nano-ZrO2 was processed using a standard hydrothermal technique in pure form. The crystal structure of nano-ZrO2 and phase purity were studied, and the crystallite size was calculated from XRD analysis using the Debye-Scherrer equation. Furthermore, the antimicrobial activity of the synthesized benzimidazole drugs was evaluated in terms of Gram-positive, Gram-negative, and antifungal activity, and the results were satisfactory.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Benzimidazoles/pharmacology , Catalysis/drug effects , Nanoparticles/administration & dosage , Zirconium/pharmacology
5.
Curr Org Synth ; 17(5): 396-403, 2020.
Article in English | MEDLINE | ID: mdl-32294044

ABSTRACT

AIMS: A series of six 4-benzylidene-2-((1-phenyl-3,4-dihydro isoquinoline-2(1H)-yl)methyloxazol- 5(4H)-one derivatives were synthesized by condensation of substituted aryl aldehydes with 2-(2-(1-phenyl-3,4- dihydro isoquinoline-2(1H)-acetamido)acetic acid in the presence of sodium acetate, acetic anhydride and zinc oxide as catalysts. BACKGROUND: Novel Synthesis of 4-Benzylidene-2-((1-phenyl-3,4-dihy droisoquinoline-2(1H)-yl)methyl)oxazol- 5(4H)-one derivatives using 1,2,3,Tetrahydroisoquinoline and their antimicrobial activity. OBJECTIVE: The title compounds can be synthesized from 1,2,3,4-tetrahydroisoquinoline. METHODS: The target molecules, i.e., 4-benzylidene-2-((1-phenyl-3, 4-dihydro isoquinoline-2(1H)-yl) methyl) oxazol-5(4H)-one derivatives (8a-8f) have been synthesized from 1,2,3,4-tetrahydroisoquinoline which was prepared from benzoic acid in few steps. RESULTS: All the six compounds were evaluated based on advanced spectral data (1H NMR, 13C NMR & LCMS), and the chemical structures of all compounds were determined by elemental analysis. CONCLUSION: Antibacterial activity of the derivatives was examined for the synthesized compounds and results indicate that compound with bromine substitution has a good activity profile.


Subject(s)
Anti-Bacterial Agents/pharmacology , Isoquinolines/pharmacology , Oxazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Cyclization , Isoquinolines/chemical synthesis , Microbial Sensitivity Tests , Oxazoles/chemical synthesis
6.
Saudi J Biol Sci ; 26(7): 1385-1391, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31866742

ABSTRACT

Current exanimation reports, green fabrication of silver doped TiO2 nanoparticles (Ag/TiO2) using aqueous extract of Acacia nilotica as bio-reductant and assess its potential as antimicrobial and anticancer agent. The obtained spherical Ag/TiO2 were characterized by various analytical techniques including FTIR, (XRD), (FE-SEM EDS), and (TEM). Synthesized Ag/TiO2 demonstrated broad spectrum antibacterial and anticandidal activity. The order of antimicrobial activity was found to be E. coli > C. albicans > MRSA > P. aeruginosa. In addition, cytotoxicity and oxidative stress of Ag/TiO2 nanoparticles in (MCF-7) cells was also investigated. Outcomes of MTT assay showed concentration dependent reduction in cell viability. Further, synthesized NPs reduced the level of glutathione, induced ROS generation and lipid peroxidation in the treated cells. Therefore, it is envisaged that these spherical nanoparticles may be exploited in drug delivery, pharmaceutical, and food industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...