Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Breed ; 41(5): 36, 2021 May.
Article in English | MEDLINE | ID: mdl-37309330

ABSTRACT

As a staple food for more than half of the world's population, the importance of rice is self-evident. Compared with ordinary rice, rice cultivars with superior eating quality and appearance quality are more popular with consumers due to their unique taste and ornamental value, even if their price is much higher. Appearance quality and CEQ (cooking and eating quality) are two very important aspects in the evaluation of rice quality. Here, we performed a genome-wide association study on floury endosperm in a diverse panel of 533 cultivated rice accessions. We identified a batch of potential floury genes and prioritize one (LOC_Os03g48060) for functional analyses. Two floury outer endosperm mutants (flo19-1 and flo19-2) were generated through editing LOC_Os03g48060 (named as FLO19 in this study), which encodes a class I glutamine amidotransferase. The different performances of the two mutants in various storage substances directly led to completely different changes in CEQ. The mutation of FLO19 gene caused the damage of carbon and nitrogen metabolism in rice, which affected the normal growth and development of rice, including decreased plant height and yield loss by decreased grain filling rate. Through haplotype analysis, we identified a haplotype of FLO19 that can improve both CEQ and appearance quality of rice, Hap2, which provides a selection target for rice quality improvement, especially for high-yield indica rice varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01226-z.

2.
J Ethnopharmacol ; 266: 113436, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33011372

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dingxin Recipe (DXR) is a traditional Chinese medicine formula that has been reported to be effective and safe treatment for cardiovascular diseases, such as arrhythmias, coronary heart disease. Dingxin Recipe IV (DXR IV) was further improved from the DXR according to the traditional use. However, the mechanism of DXR IV in atherosclerosis is unclear. AIM OF THE STUDY: This study aimed to illustrate whether DXR IV improve atherosclerosis through modulating the lipid metabolism and gut microbiota in atherosclerosis mice. MATERIALS AND METHODS: 40 male ApoE-/- mice were fed on HFD for 12 weeks and were then treated with DXR IV (1.8, 0.9, or 0.45 g/kg/d) for another 12 weeks. The decroation of DXR IV contains four traditional Chinese medicines: the dried rhizome of Coptis chinensis Franch. (15.09%), the root of Salvia miltiorrhiza Bunge (28.30%), the seed of Ziziphus jujuba Mill. (37.74%) and the fruiting body of Ganoderma lucidum (Leyss.ex Fr.) Karst. (18.87%). 8 male c57BL/6 mice fed a normal diet served as control group. The atherosclerotic plaque was quantified by oil-red O staining and masson trichrome staining. Mice feces were collected. The gut micobiota were detected by 16S rRNA gene sequencing and fecal metabolites were analyzed by 1H NMR spectroscopy. The effect of DXR IV on blood lipids (TG, TC, LDL-C, HDL-C) was investigated. The lipid metabolism related genes were determined by RT-qPCR and western blotting respectively. RESULTS: DXR IV exerted the anti-atherosclerosis effect by inhibiting the excessive cholesterol deposition in aorta and regulating the level of TG, TC, LDL-C and HDL-C. The composition of gut microbiota was changed. Interestingly, the relative abundance of Muribaculaceae and Ruminococcaceae increased after DXR IV administration, whereas the abundance of Erysipelotrichaceae decreased, which have been beneficial to lipid metabolism. Nine potential metabolic biomarkers, including acetate, butyrate, propionate, alanine, succinate, valerate, xylose, choline, glutamate, were identified, which were related to fatty acid metabolism. Further, the pathway of fatty acid was detected by the RT-qPCR and western blotting. Compared with model group, the level of LXR-α and SREBP1 decreased significantly in DXR IV group while LXR-ß, SREBP2 showed no statistical significance. It indicated that DXR IV modulated lipid metabolism by LXR-α/SREBP1 but not LXRß and SREBP2. CONCLUSIONS: DXR IV exhibits potential anti-atherosclerosis effect, which is closely related to lipid metabolism and the gut microbiota. This study may provide novel insights into the mechanism of DXR IV on atherosclerosis and a basis for promising clinical usage.


Subject(s)
Apolipoproteins E/genetics , Atherosclerosis/prevention & control , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Animals , Diet, High-Fat , Liver X Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic/prevention & control , Sterol Regulatory Element Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...