Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomater Adv ; 152: 213506, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37364396

ABSTRACT

Electrospinning is an increasingly popular technique for obtaining scaffolds for skin regeneration. However, electrospun scaffolds may also have some disadvantages, as the densely packed fibers in the scaffold structure can limit the penetration of skin cells into the inner part of the material. Such a dense arrangement of fibers can cause the cells to treat the 3D material as 2D one, and thus cause them to accumulate only on the upper surface. In this study, bi-polymer scaffolds made of polylactide (PLA) and polyvinyl alcohol (PVA) electrospun in a sequential or a concurrent system were investigated in a different PLA:PVA ratio (2:1 and 1:1). The properties of six types of model materials were investigated and compared i.e.; the initial materials electrospun by the sequential (PLA/PVA, 2PLA/PVA) and the concurrent system (PLA||PVA) and the same materials with removed PVA fibers (PLA/rPVA, 2PLA/rPVA, PLA||rPVA). The fiber models were intended to increase the porosity and coherent structure parameters of the scaffolds. The applied treatment involving the removal of PVA nanofibers increased the size of interfibrous pores formed between the PLA fibers. Ultimately, the porosity of the PLA/PVA scaffolds increased from 78 % to 99 %, and the time of water absorption decreased from 516 to 2 s. The change in wettability was induced by a synergistic effect of decrease in roughness after washing out and the presence of residual PVA fibers. The chemical analysis carried out confirmed the presence of PVA residues on the PLA fibers (FTIR-ATR study). In vitro studies were performed on human keratinocytes (HaKaT) and macrophages (RAW264.7), for which penetration into the inner part of the PLAIIPVA scaffold was observed. The new proposed approach, which allows the removal of PVA fibers from the bicomponent material, allows to obtain a scaffold with increased porosity, and thus better permeability for cells and nutrients.


Subject(s)
Polyesters , Polyvinyl Alcohol , Humans , Polyvinyl Alcohol/chemistry , Porosity , Regeneration
2.
J Funct Biomater ; 14(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36976091

ABSTRACT

The aim of the work was to examine the possibility of using modified halloysite nanotubes as a gentamicin carrier and to determine the usefulness of the modification in terms of the effect on the amount of the drug attached, its release time, but also on the biocidal properties of the carriers. In order to fully examine the halloysite in terms of the possibility of gentamicin incorporating, a number of modifications of the native halloysite were carried out prior to gentamicin intercalation with the use of sodium alkali, sulfuric and phosphoric acids, curcumin and the process of delamination of nanotubes (expanded halloysite) with ammonium persulfate in sulfuric acid. Gentamicin was added to unmodified and modified halloysite in an amount corresponding to the cation exchange capacity of pure halloysite from the Polish Dunino deposit, which was the reference sample for all modified carriers. The obtained materials were tested to determine the effect of surface modification and their interaction with the introduced antibiotic on the biological activity of the carrier, kinetics of drug release, as well as on the antibacterial activity against Escherichia coli Gram-negative bacteria (reference strain). For all materials, structural changes were examined using infrared spectroscopy (FTIR) and X-ray diffraction (XRD); thermal differential scanning calorimetry with thermogravimetric analysis (DSC/TG) was performed as well. The samples were also observed for morphological changes after modification and drug activation by transmission electron microscopy (TEM). The conducted tests clearly show that all samples of halloysite intercalated with gentamicin showed high antibacterial activity, with the highest antibacterial activity for the sample modified with sodium hydroxide and intercalated with the drug. It was found that the type of halloysite surface modification has a significant effect on the amount of gentamicin intercalated and then released into the surrounding environment but does not significantly affect its ability to further influence drug release over time. The highest amount of drug released among all intercalated samples was recorded for halloysite modified with ammonium persulfate (real loading efficiency above 11%), for which high antibacterial activity was found after surface modification, before drug intercalation. It is also worth noting that intrinsic antibacterial activity was found for non-drug-intercalated materials after surface functionalization with phosphoric acid (V) and ammonium persulfate in the presence of sulfuric acid (V).

3.
Molecules ; 27(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630708

ABSTRACT

Emulsion electrospinning is a method of modifying a fibers' surface and functional properties by encapsulation of the bioactive molecules. In our studies, bovine serum albumin (BSA) played the role of the modifier, and to protect the protein during the electrospinning process, the W/O (water-in-oil) emulsions were prepared, consisting of polymer and micelles formed from BSA and anionic (sodium dodecyl sulfate-S) or nonionic (Tween 80-T) surfactant. It was found that the micelle size distribution was strongly dependent on the nature and the amount of the surfactant, indicating that a higher concentration of the surfactant results in a higher tendency to form smaller micelles (4-9 µm for S and 8-13 µm for T). The appearance of anionic surfactant micelles reduced the diameter of the fiber (100-700 nm) and the wettability of the nonwoven surface (up to 77°) compared to un-modified PCL polymer fibers (100-900 nm and 130°). The use of a non-ionic surfactant resulted in better loading efficiency of micelles with albumin (about 90%), lower wettability of the nonwoven fabric (about 25°) and the formation of larger fibers (100-1100 nm). X-ray photoelectron spectroscopy (XPS) was used to detect the presence of the protein, and UV-Vis spectrophotometry was used to determine the loading efficiency and the nature of the release. The results showed that the location of the micelles influenced the release profiles of the protein, and the materials modified with micelles with the nonionic surfactant showed no burst release. The release kinetics was characteristic of the zero-order release model compared to anionic surfactants. The selected surfactant concentrations did not adversely affect the biological properties of fibrous substrates, such as high viability and low cytotoxicity of RAW macrophages 264.7.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Emulsions/chemistry , Excipients , Lipoproteins , Micelles , Polymers , Serum Albumin, Bovine/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
4.
Materials (Basel) ; 15(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407821

ABSTRACT

The development of new chemically resistant anodes for protonic ceramic fuel cells (PCFCs) is urgently required to avoid the costly deep hydrogen purification method. Ba0.95Ca0.05Ce0.9Y0.1O3-δ (5CBCY), which is more chemically resistant than BaCaCe0.9Y0.1O3-δ, was here tested as a component of a composite NiO-5CBCY anode material. A preparation slurry comprising 5CBCY, NiO, graphite, and an organic medium was tape cast, sintered and subjected to thermal treatment in 10 vol.% H2 in Ar at 700 °C. Differential thermal analysis, thermogravimetry, quadrupole mass spectrometry, X-ray diffraction analysis, scanning electron microscopy, the AC four-probe method and electrochemical impedance spectroscopy were used for the investigation. The electrical conductivity of the Ni-5CBCY in H2-Ar at 700 °C was 1.1 S/cm. In the same gas atmosphere but with an additional 5 vol.% CO2, it was slightly lower, at 0.8 S/cm. The Ni-5CBCY cermet exhibited repeatable electrical conductivity values during Ni-to-NiO oxidation cycles and NiO-to-Ni reduction in the 5CBCY matrix, making it sufficient for preliminary testing in PCFCs.

5.
Materials (Basel) ; 15(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35207904

ABSTRACT

The paper presents the results of research on the influence of the granulometric composition on the rheological properties of granulates from soft waste produced in the manufacturing of ceramic tiles using the Lamgea and Continua methods in terms of the possibility of their reuse. The composition of the granulates was modified by removing individual grain fractions in three measurement series. Comparatively, the measurement samples for the production granulates were prepared in the same way. Microscopic observations and granulometric analysis showed significant differences in the grain shape and grain size distribution of granulates. The soft waste granulates also showed much worse flow ability than the production granulates. It was shown that the removal of the smallest fractions significantly improved the rheological properties of soft waste granulates. This tendency was also observed in the case of measurements of changes in the bulk density. A Brookfield powder analyzer was used for rheological tests, and a flow analysis was performed using the numerical Jenike classification.

6.
J Mech Behav Biomed Mater ; 125: 104923, 2022 01.
Article in English | MEDLINE | ID: mdl-34753103

ABSTRACT

In this study, we propose a new approach in the anterior cruciate ligament (ACL) replacement to provide stability and integration with bone tunnel. A polylactide (PLA)-based tubular implant was used to support the graft stabilization in femoral and tibial bones and to stimulate the healing process after (ACL) replacement on a sheep model. The ACL was replaced with an autologous Achilles tendon split graft. The tendon-to-bone healing in the model was analyzed after 6 and 12 weeks. Two groups of animals were compared, i.e. the group with the PLA-based implant used in the ACL replacement and the control group without the implant. The knee joints were mechanically and clinically evaluated, including the histopathology tests, to determine their stability and integrity. The results indicated that the bioresorbable PLA-based tubular implant may facilitate integration of the tendon graft with bone. Remodeling the allograft inside the implant improves the joint mobility from the first week of healing: no pathological changes were observed at the surgery site and in the animals' mobility. After 6 and 12 weeks of healing no significant changes in the mechanical parameters of the knee joint were observed, regarding the joint failure force, knee displacement, angular mobility range and joint stiffness. Relatively small values of the non-destructive tests in the knee displacement, already 6 weeks after surgery, indicated the early stabilization of the knee joint. The studies showed that the failure forces of knee joints after the ACL replacement with the PLA-based implant are lower than those of an intact joint, although their biomechanical features, including strain-at- failure, are similar. The biomechanical parameters of the knee joint were significantly improved due to the selected method of attaching the autograft ends to the femoral and tibial bone surfaces. After 12 weeks the intra-tunnel tendon-bone site with the PLA implant revealed the better tibia-femur joint mechanical stability, linear force-strain function and the decreasing strain-to-failure value, as compared to the control group.


Subject(s)
Achilles Tendon , Anterior Cruciate Ligament , Animals , Anterior Cruciate Ligament/surgery , Autografts , Knee Joint/surgery , Polyesters , Sheep
7.
Materials (Basel) ; 14(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34832157

ABSTRACT

The comprehensive results regarding the physicochemical properties of carbonaceous materials that are obtained from pistachio shells support their usage as solid fuels to supply direct carbon solid oxide fuel cells (DC-SOFCs). The influence of preparation conditions on variations in the chemical composition, morphology of the biochar powders, and degree of graphitization of carbonaceous materials were investigated. Based on structural investigations (X-ray diffraction analysis and Raman spectroscopy), it was observed that disordered carbon particles developed during the application of thermal treatments. The use of X-ray fluorescence enabled a comparative analysis of the chemical composition of the inorganic matter in biocarbon-based samples. Additionally, the gasification of carbonaceous-based samples vs. time at a temperature of 850 °C was investigated in a H2O or CO2 gas atmosphere. The analysis demonstrated the conversion rate of biochar obtained from pistachio shells to H2, CH4 and CO during steam gasification. The electrochemical investigations of the DC-SOFCs that were supplied with biochars obtained from pistachio shells were characterized by satisfactory values for the current and power densities at a temperature range of 700-850 °C. However, a higher power output of the DC-SOFCs was observed when CO2 was introduced to the anode chamber. Therefore, the impact of the Boudouard reaction on the performance of DC-SOFCs was confirmed. The chars that were prepared from pistachio shells were adequate for solid fuels for utilization in DC-SOFCs.

8.
Materials (Basel) ; 14(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34832307

ABSTRACT

Electrospinning was used to obtain multifunctional fibrous composite materials with a matrix of poly-ɛ-caprolactone (PCL) and 2 wt.% addition of a nanofiller: montmorillonite (MMT), montmorillonite intercalated with gentamicin sulphate (MMTG) or gentamicin sulphate (G). In the first stage, the aluminosilicate gallery was modified by introducing gentamicin sulfate into it, and the effectiveness of the intercalation process was confirmed on the basis of changes in the clay particle size from 0.5 µm (for MMT) to 0.8 µm (for MMTG), an increase in the interplanar distance d001 from 12.3 Å (for MMT) to 13.9 Å (for MMTG) and altered clay grain morphology. In the second part of the experiment, the electrospinning process was carried out in which the polymer nonwovens with and without the modifier were prepared directly from dichloromethane (DCM) and N,N-dimethylformamide (DMF). The nanocomposite fibrous membranes containing montmorillonite were prepared from the same polymer solution but after homogenization with the modifier (13 wt.%). The degree of dispersion of the modifier was evaluated by average microarray analysis from observed area (EDS), which was also used to determine the intercalation of montmorillonite with gentamicin sulfate. An increase in the size of the fibers was found for the materials with the presence of the modifier, with the largest diameters measured for PCL_MMT (625 nm), and the smaller ones for PCL_MMTG (578 nm) and PCL_G (512 nm). The dispersion of MMT and MMTG in the PCL fibers was also confirmed by indirect studies such as change in mechanical properties of the nonwovens membrane, where the neat PCL nonwoven was used as a reference material. The addition of the modifier reduced the contact angle of PCL nonwovens (from 120° for PCL to 96° for PCL_G and 98° for PCL_MMTG). An approximately 10% increase in tensile strength of the nonwoven fabric with the addition of MMT compared to the neat PCL nonwoven fabric was also observed. The results of microbiological tests showed antibacterial activity of all obtained materials; however, the inhibition zones were the highest for the materials containing gentamicin sulphate, and the release time of the active substance was significantly extended for the materials with the addition of montmorillonite containing the antibiotic. The results clearly show that the electrospinning technique can be effectively used to obtain nanobiocomposite fibers with the addition of nonintercalated and intercalated montmorillonite with improved strength and increased stiffness compared to materials made only of the polymer fibers, provided that a high filler dispersion in the spinning solution is obtained.

9.
Materials (Basel) ; 14(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578744

ABSTRACT

The aim of this work was to study effect of the type of silica nanoparticles on the properties of nanocomposites for application in the guided bone regeneration (GBR). Two types of nanometric silica particles with different size, morphology and specific surface area (SSA) i.e., high specific surface silica (hss-SiO2) and low specific surface silica (lss-SiO2), were used as nano-fillers for a resorbable polymer matrix: poly(L-lactide-co-D,L-lactide), called PLDLA. It was shown that higher surface specific area and morphology (including pore size distribution) recorded for hss-SiO2 influences chemical activity of the nanoparticle; in addition, hydroxyl groups appeared on the surface. The nanoparticle with 10 times lower specific surface area (lss-SiO2) characterized lower chemical action. In addition, a lack of hydroxyl groups on the surface obstructed apatite nucleation (reduced zeta potential in comparison to hss-SiO2), where an apatite layer appeared already after 48 h of incubation in the simulated body fluid (SBF), and no significant changes in crystallinity of PLDLA/lss-SiO2 nanocomposite material in comparison to neat PLDLA foil were observed. The presence and type of inorganic particles in the PLDLA matrix influenced various physicochemical properties such as the wettability, and the roughness parameter note for PLDLA/lss-SiO2 increased. The results of biological investigation show that the bioactive nanocomposites with hss-SiO2 may stimulate osteoblast and fibroblast cells'proliferation and secretion of collagen type I. Additionally, both nanocomposites with the nanometric silica inducted differentiation of mesenchymal cells into osteoblasts at a proliferation stage in in vitro conditions. A higher concentration of alkaline phosphatase (ALP) was observed on the material modified with hss-SiO2 silica.

10.
Acta Bioeng Biomech ; 22(2): 83-92, 2020.
Article in English | MEDLINE | ID: mdl-32868936

ABSTRACT

PURPOSE: The aim of this study was to investigate the possibility of intercalation of gentamicin and neomycin in montmorillonite (MMT) nanofillers, as well as to study the in vitro antimicrobial properties of nanocomposite films containing a small amount of thus obtained nanofillers. METHODS: The polylactide matrix (PLA) nanocomposite films with drug-intercalated montmorillonite fillers were obtained by casting after intercalation of drugs in aqueous solutions. The efficiency of intercalation has been confirmed by X-ray diffraction (XRD) and Zeta potential measurements. The materials were studied for surface wettability, roughness and mechanical properties during 6 weeks of incubation in phosphate buffer saline, and their bactericidal activity was tested against Escherichia coli bacteria before and after 6 weeks of incubation in distilled water at 37 °C. The presence of antibiotics during the incubation was monitored by conductivity and pH measurements. RESULTS: The results indicate that nanocomposite polylactide films with montmorillonite filler intercalated with gentamicin and neomycin tend to degrade faster that their counterparts with non-intercalated fillers, which affects their mechanical properties. However, drug intercalation provided an antibacterial activity, which was confirmed by the presence of zones inhibiting the growth of Gram-negative bacteria for both antibiotics. It was also confirmed that the interaction of antibiotics with clay and polymer matrix did not adversely affect this bactericidal effect. CONCLUSIONS: Montmorillonite can be successfully intercalated with both gentamicin and neomycin, and then used as active filler for polylactide films having very good antibacterial properties, therefore their use in biomedical applications can be significantly expanded.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clay/chemistry , Drug Delivery Systems , Nanocomposites/chemistry , Polymers/pharmacology , Drug Liberation , Elasticity , Electric Conductivity , Escherichia coli/drug effects , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Powders , Static Electricity , Stress, Mechanical , Tensile Strength
11.
Materials (Basel) ; 13(8)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316311

ABSTRACT

Comparative studies were performed on variations in the ABO3 perovskite structure, chemical stability in a CO2-H2 gas atmosphere, and electrical conductivity measurements in air, hydrogen, and humidity-involving gas atmospheres of monophase orthorhombic Ba1-xSrxCe0.9Y0.1O3-δ samples, where 0 < x < 0.1. The substitution of strontium with barium resulting in Ba1-xSrxCe0.9Y0.1O3-δ led to an increase in the specific free volume and global instability index when compared to BaCe0.9Y0.1O3-δ. Reductions in the tolerance factor and cell volume were found with increases in the value of x in Ba1-xSrxCe0.9Y0.1O3-δ. Based on the thermogravimetric studies performed for Ba1-xSrxCe0.9Y0.1O3-δ, where 0 < x < 0.1, it was found that modified samples of this type exhibited superior chemical resistance in a CO2 gas atmosphere when compared to BaCe0.9Y0.1O3-δ. The application of broadband impedance spectroscopy enabled the determination of the bulk and grain boundary conductivity of Ba1-xSrxCe0.9Y0.1O3-δ samples within the temperature range 25-730 °C. It was found that Ba0.98Sr0.02Ce0.9Y0.1O3-δ exhibited a slightly higher grain interior and grain boundary conductivity when compared to BaCe0.9Y0.1O3-δ. The Ba0.95Sr0.05Ce0.9Y0.1O3-δ sample also exhibited improved electrical conductivity in hydrogen gas atmospheres or atmospheres involving humidity. The greater chemical resistance of Ba1-xSrxCe0.9Y0.1O3-δ, where x = 0.02 or 0.05, in a CO2 gas atmosphere is desirable for application in proton ceramic fuel cells supplied by rich hydrogen processing gases.

12.
Acta Bioeng Biomech ; 20(4): 91-99, 2018.
Article in English | MEDLINE | ID: mdl-30821285

ABSTRACT

PURPOSE: Skin substitutes are heterogeneous group of scaffolds (natural or synthetic) and cells. We hypothesize that nanofibers with layer composition made of polylactide (PLA) and sodium hyaluronate (HA) obtained using electrospinning method are a good matrix for cell adhesion and proliferation. METHODS: Optimal conditions of electrospinning of PLA and HA nanofibers to create layered compositions (PLA membrane covered with HA nonwovens) were determined by modifying parameters such as the appropriate amount of solvents, polymer concentration, mixing temperature and electrospinning process conditions. By changing the parameters, it was possible to control the diameter and properties of both polymer fibers. The spinning solution were characterized by surface tension and rheology. A scanning electron microscope (SEM) was used to determine the morphology and fiber diameters: PLA and HA. Structure of the PLA/HA nonwoven was analyzed using spectroscopy (FTIR/ATR). Biocompatibility of the nonwoven with fibroblasts (ECM producers) was assessed in the in vitro conditions. RESULTS: The results showed that stable conditions for the formation of submicron PLA fibers were obtained using a 13% wt. solution of the polymer, dissolved in a 3:1 mixture of DCM:DMF at 45 °C. The hyaluronic fibers were prepared from a 12% wt. solution of the polymer dissolved in a 2:1 mixture of ammonia water and ethyl alcohol. All materials were biocompatible but to a different degree. CONCLUSIONS: The proposed laminate scaffold was characterized by a hydrophobic-hydrophilic domain surface with a maintained fiber size of both layers. The material positively underwent biocompatibility testing in contact with fibroblasts.


Subject(s)
Hyaluronic Acid/pharmacology , Polyesters/pharmacology , Skin, Artificial , Cell Line , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Membranes, Artificial , Rheology , Solutions , Spectroscopy, Fourier Transform Infrared , Surface Tension , Wettability
13.
Acta Bioeng Biomech ; 19(4): 25-33, 2017.
Article in English | MEDLINE | ID: mdl-29507446

ABSTRACT

The aim of this study was to evaluate the effect of the not activated (unmodified) montmorillonite (MMT) filler on the antibacterial properties of polymer nanocomposites with a biodegradable polylactide (PLA) matrix. The subject of research was selected to verify the reports on the lack of antibacterial properties of unmodified montmorillonite in nanocomposites and to investigate the potential conditions of their manufacturing which are decisive for the resulting properties. Evaluation of antibacterial and mechanical properties of both the starting materials and the obtained nanocomposites filled with layered silicates as well as the wettability of the materials, measured by a sitting drop method was made on samples in the form of a film. The results show that the surface wettability of the polymer nanocomposites did not exhibit significant change compared to the film of neat PLA. However, a significant improvement in the mechanical and antimicrobial properties of the nanocomposite films obtained in a specific solvent casting process of the nanocomposite preceded by exfoliation of the film in an ultrasonic homogenizer was demonstrated. The antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Enterococcus faecalis was also observed, and, moreover, the montmorillonite-containing films revealed a zone of inhibition of bacterial growth when tested against the lactosepositive bacteria of the Enterobacteriaceae family, which are present in the waste water. The advantageous properties of the obtained PLA/MMT nanocomposites suggest that the unmodified montmorillonite may be potentially used as filler for polymer films in the packaging industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bentonite/pharmacology , Mechanical Phenomena , Nanocomposites/chemistry , Polyesters/pharmacology , Microbial Sensitivity Tests , Powders , Staphylococcus aureus/drug effects , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...