Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Drug Metab Pharmacokinet ; 36(4): 189-96, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21805207

ABSTRACT

This study presents a new nonlinear two compartmental model and its application to the evaluation of valproic acid (VPA) pharmacokinetics in human volunteers after oral administration. We have used literature VPA concentrations. In the model, the integer order derivatives are replaced by derivatives of real order often called fractional order derivatives. Physically that means that the history (memory) of a biological process, realized as a transfer from one compartment to another, is taken into account with the mass balance conservation observed. Our contribution is the analysis of a specific nonlinear two compartmental model with the application in evaluation of VPA pharmacokinetics. The agreement of the values predicted by the proposed model with the values obtained through experiments is shown to be good. Thus, pharmacokinetics of VPA after oral application can be described well by a nonlinear two compartmental model with fractional derivatives of the same order proposed here. Parameters in the model are determined by the least-squares method and the particle swarm optimization (PSO) numerical procedure is used. The results show that the nonlinear fractional order two compartmental model for VPA pharmacokinetics is superior in comparison to the classical (integer order) linear two compartmental model and to the linear fractional order two compartmental model.


Subject(s)
Models, Biological , Valproic Acid/pharmacokinetics , Computer Simulation , Humans , Nonlinear Dynamics
2.
J Pharmacokinet Pharmacodyn ; 37(2): 119-34, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20072802

ABSTRACT

This study presents a new two compartmental model and its application to the evaluation of diclofenac pharmacokinetics in a small number of healthy adults, during a bioequivalence trial. In the model the integer order derivatives are replaced by derivatives of real order often called fractional order derivatives. Physically that means that a history (memory) of a biological process, realized as a transfer from one compartment to another one with the mass balance conservation, is taken into account. This kind of investigations in pharmacokinetics is founded by Dokoumetzidis and Macheras through the one compartmental models while our contribution is the analysis of multi-dimensional compartmental models with the applications of the two compartmental model in evaluation of diclofenac pharmacokinetics. Two experiments were preformed with 12 healthy volunteers with two slow release 100 mg diclofenac tablet formulations. The agreement of the values predicted by the proposed model with the values obtained through experiments is shown to be good. Thus, pharmacokinetics of slow release diclofenac can be described well by a specific two compartmental model with fractional derivatives of the same order. Parameters in the model are determined by the least-squares method and the Particle Swarm Optimization (PSO) numerical procedure is used. The results show that the fractional order two compartmental model for diclofenac is superior in comparison to the classical two compartmental model. Actually this is true in general case since the classical one is a special case of the fractional one.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Diclofenac/pharmacokinetics , Models, Biological , Adult , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Chromatography, High Pressure Liquid , Cross-Over Studies , Delayed-Action Preparations , Diclofenac/administration & dosage , Female , Humans , Male , Therapeutic Equivalency , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...