Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Europace ; 24(9): 1372-1383, 2022 10 13.
Article in English | MEDLINE | ID: mdl-35640917

ABSTRACT

Digital technology is now an integral part of medicine. Tools for detecting, screening, diagnosis, and monitoring health-related parameters have improved patient care and enabled individuals to identify issues leading to better management of their own health. Wearable technologies have integrated sensors and can measure physical activity, heart rate and rhythm, and glucose and electrolytes. For individuals at risk, wearables or other devices may be useful for early detection of atrial fibrillation or sub-clinical states of cardiovascular disease, disease management of cardiovascular diseases such as hypertension and heart failure, and lifestyle modification. Health data are available from a multitude of sources, namely clinical, laboratory and imaging data, genetic profiles, wearables, implantable devices, patient-generated measurements, and social and environmental data. Artificial intelligence is needed to efficiently extract value from this constantly increasing volume and variety of data and to help in its interpretation. Indeed, it is not the acquisition of digital information, but rather the smart handling and analysis that is challenging. There are multiple stakeholder groups involved in the development and effective implementation of digital tools. While the needs of these groups may vary, they also have many commonalities, including the following: a desire for data privacy and security; the need for understandable, trustworthy, and transparent systems; standardized processes for regulatory and reimbursement assessments; and better ways of rapidly assessing value.


Subject(s)
Cardiology , Cardiovascular Diseases , Heart Failure , Telemedicine , Wearable Electronic Devices , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/therapy , Artificial Intelligence , Glucose , Heart Failure/diagnosis , Heart Failure/therapy , Humans
2.
Heart Rhythm ; 14(5): 702-709, 2017 05.
Article in English | MEDLINE | ID: mdl-28192207

ABSTRACT

BACKGROUND: Early performance of the Micra transcatheter pacemaker from the global clinical trial reported a 99.2% implant success rate, low and stable pacing capture thresholds, and a low (4.0%) rate of major complications up to 6 months. OBJECTIVE: The purpose of this report was to describe the prespecified long-term safety objective of Micra at 12 months and electrical performance through 24 months. METHODS: The Micra Transcatheter Pacing Study was a prospective single-arm study designed to assess the safety and efficacy of the Micra VVIR leadless/intracardiac pacemaker. Enrolled patients met class I or II guideline recommendations for de novo ventricular pacing. The long-term safety objective was freedom from a system- or procedure-related major complication at 12 months. A predefined historical control group of 2667 patients with transvenous pacemakers was used to compare major complication rates. RESULTS: The long-term safety objective was achieved with a freedom from major complication rate of 96.0% at 12 months (95% confidence interval 94.2%-97.2%; P < .0001 vs performance goal). The risk of major complications for patients with Micra (N = 726) was 48% lower than that for patients with transvenous systems through 12 months postimplant (hazard ratio 0.52; 95% confidence interval 0.35-0.77; P = .001). Across subgroups of age, sex, and comorbidities, Micra reduced the risk of major complications compared to transvenous systems. Electrical performance was excellent through 24 months, with a projected battery longevity of 12.1 years. CONCLUSION: Long-term performance of the Micra transcatheter pacemaker remains consistent with previously reported data. Few patients experienced major complications through 12 months of follow-up, and all patient subgroups benefited as compared to transvenous pacemaker historical control group.


Subject(s)
Arrhythmias, Cardiac/therapy , Cardiac Pacing, Artificial/adverse effects , Pacemaker, Artificial/adverse effects , Aged , Cardiac Catheters , Equipment Design , Equipment Failure Analysis , Female , Follow-Up Studies , Humans , Male , Patient Safety , Prospective Studies , Prosthesis Failure , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...