Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 44(3): 312-323, 2017 Feb.
Article in English | MEDLINE | ID: mdl-32480566

ABSTRACT

Reduced growth and stomatal closure are the two main responses of plants to drought stress. The extent to which these processes are connected and whether different genotypes prefer one over the other remains unclear. To understand the genotype-specific interconnections of these two processes and evaluate potential utilisation of this knowledge for drought tolerance phenotyping, six natural accessions of Arabidopsis thaliana (L.) Heynh. were exposed to drought stress for 10 days. Projected leaf area of rosette, light-saturated CO2 assimilation rate (Amax), relative water content (RWC), leaf temperature (thermal imaging), and spectral reflectance were measured through the course of induced drought stress. Three types of acclimation were identified: (i) growth not affected but Amax significantly reduced, (ii) both growth and Amax significantly reduced, and (iii) growth significantly reduced but only small decrease in Amax. Within the last type, the smallest decline in RWC was evident. These results show that a substantial reduction in leaf area may cause a decline in transpiration that enables maintenance of both RWC and physiological processes. Both non-invasive thermal imaging and spectral reflectance measurements proved reliable tools for tracking drought-induced changes in Amax and RWC across all accessions tested and thus are effective tools for phenotyping stress tolerance.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 170: 234-41, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27450121

ABSTRACT

The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.


Subject(s)
Chlorophyll/metabolism , Helianthus/chemistry , Herbicides/toxicity , Photosystem II Protein Complex/chemistry , Spectrum Analysis, Raman , Chlorophyll A , Flavonols/analysis , Fluorescence , Helianthus/drug effects , Plant Epidermis/metabolism , Plant Leaves/chemistry , Reference Standards
3.
Plant Methods ; 12: 46, 2016.
Article in English | MEDLINE | ID: mdl-27872654

ABSTRACT

BACKGROUND: Non-invasive and high-throughput monitoring of drought in plants from its initiation to visible symptoms is essential to quest drought tolerant varieties. Among the existing methods, chlorophyll a fluorescence (ChlF) imaging has the potential to probe systematic changes in photosynthetic reactions; however, prerequisite of dark-adaptation limits its use for high-throughput screening. RESULTS: To improve the throughput monitoring of plants, we have exploited their light-adaptive strategy, and investigated possibilities of measuring ChlF transients under low ambient irradiance. We found that the ChlF transients and associated parameters of two contrasting Arabidopsis thaliana accessions, Rsch and Co, give almost similar information, when measured either after ~20 min dark-adaptation or in the presence of half of the adaptive growth-irradiance. The fluorescence parameters, effective quantum yield of PSII photochemistry (ΦPSII) and fluorescence decrease ratio (RFD) resulting from this approach enabled us to differentiate accessions that is often not possible by well-established dark-adapted fluorescence parameter maximum quantum efficiency of PSII photochemistry (FV/FM). Further, we screened ChlF transients in rosettes of well-watered and drought-stressed six A. thaliana accessions, under half of the adaptive growth-irradiance, without any prior dark-adaptation. Relative water content (RWC) in leaves was also assayed and compared to the ChlF parameters. As expected, the RWC was significantly different in drought-stressed from that in well-watered plants in all the six investigated accessions on day-10 of induced drought; the maximum reduction in the RWC was obtained for Rsch (16%), whereas the minimum reduction was for Co (~7%). Drought induced changes were reflected in several features of ChlF transients; combinatorial images obtained from pattern recognition algorithms, trained on pixels of image sequence, improved the contrast among drought-stressed accessions, and the derived images were well-correlated with their RWC. CONCLUSIONS: We demonstrate here that ChlF transients and associated parameters measured even in the presence of low ambient irradiance preserved its features comparable to that of measured after dark-adaptation and discriminated the accessions having differential geographical origin; further, in combination with combinatorial image analysis tools, these data may be readily employed for early sensing and mapping effects of drought on plant's physiology via easy and fully non-invasive means.

SELECTION OF CITATIONS
SEARCH DETAIL
...