Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 25(7): 4168-4176, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38902961

ABSTRACT

We have successfully created self-assembled membranes by combining positively charged (Pro-X-(Phe-X)5-Pro) PFX peptides with negatively charged alginate. These PFX/alginate membranes were formed by three different peptides that contain either X = Arginine (R), Histidine (H), or Ornithine (O) as their charged amino acid. The assemblies were compared to membranes that were previously reported by us composed of X = lysine (K). This study enabled us to elucidate the impact of amino acids' specific interactions on membrane formation. SEM, SAXS, and cryo-TEM measurements show that although K, R, H, and O may have a similar net charge, the specific traits of the charged amino acid is an essential factor in determining the hierarchical structure of alginate/PFX self-assembled membranes.


Subject(s)
Alginates , Alginates/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Peptides/chemistry , Cations/chemistry , Membranes, Artificial , Arginine/chemistry
2.
Biomacromolecules ; 25(4): 2338-2347, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38499995

ABSTRACT

Bone is a frequent site for metastatic development in various cancer types, including breast cancer, with a grim prognosis due to the distinct bone environment. Despite considerable advances, our understanding of the underlying processes leading to bone metastasis progression remains elusive. Here, we applied a bioactive three-dimensional (3D) model capable of mimicking the endosteal bone microenvironment. MDA-MB-231 and MCF7 breast cancer cells were cultured on the scaffolds, and their behaviors and the effects of the biomaterial on the cells were examined over time. We demonstrated that close interactions between the cells and the biomaterial affect their proliferation rates and the expression of c-Myc, cyclin D, and KI67, leading to cell cycle arrest. Moreover, invasion assays revealed increased invasiveness within this microenvironment. Our findings suggest a dual role for endosteal mimicking signals, influencing cell fate and potentially acting as a double-edged sword, shuttling between cell cycle arrest and more active, aggressive states.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Bone and Bones/metabolism , Cell Line, Tumor , Biocompatible Materials/pharmacology , Phenotype , Cell Proliferation , Tumor Microenvironment/genetics
3.
Heliyon ; 10(4): e26095, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420433

ABSTRACT

Here we present the development of nanoparticles (NPs) formulations specifically designed for targeting the antiapoptotic Bcl-2 proteins on the outer membrane of mitochondria with the drug agent ABT-737. The NPs which are self-assembled by the natural polypeptide poly gamma glutamic acid (ϒPGA) and a designed cationic and amphiphilic peptide (PFK) have been shown to target drugs toward mitochondria. In this study we systematically developed the formulation of such NPs loaded with the ABT-737 and demonstrated the cytotoxic effect of the best identified formulation on MDA-MB-231 cells. Our findings emphasize the critical role of solutions pH and the charged state of the components throughout the formulation process as well as the concentrations of the co-components and their mixing sequence, in achieving the most stable and effective cytotoxic formulation. Our study highlights the potential versatility of designed peptides in combination with biopolymers for improving drug delivery formulations and enhance their targeting abilities.

4.
Nat Commun ; 14(1): 8198, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081813

ABSTRACT

Antibiotic resistance of bacteria is considered one of the most alarming developments in modern medicine. While varied pathways for bacteria acquiring antibiotic resistance have been identified, there still are open questions concerning the mechanisms underlying resistance. Here, we show that alpha phenol-soluble modulins (PSMαs), functional bacterial amyloids secreted by Staphylococcus aureus, catalyze hydrolysis of ß-lactams, a prominent class of antibiotic compounds. Specifically, we show that PSMα2 and, particularly, PSMα3 catalyze hydrolysis of the amide-like bond of the four membered ß-lactam ring of nitrocefin, an antibiotic ß-lactam surrogate. Examination of the catalytic activities of several PSMα3 variants allowed mapping of the active sites on the amyloid fibrils' surface, specifically underscoring the key roles of the cross-α fibril organization, and the combined electrostatic and nucleophilic functions of the lysine arrays. Molecular dynamics simulations further illuminate the structural features of ß-lactam association upon the fibril surface. Complementary experimental data underscore the generality of the functional amyloid-mediated catalytic phenomenon, demonstrating hydrolysis of clinically employed ß-lactams by PSMα3 fibrils, and illustrating antibiotic degradation in actual S. aureus biofilms and live bacteria environments. Overall, this study unveils functional amyloids as catalytic agents inducing degradation of ß-lactam antibiotics, underlying possible antibiotic resistance mechanisms associated with bacterial biofilms.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , beta Lactam Antibiotics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Monobactams/metabolism , beta-Lactams/pharmacology , beta-Lactams/metabolism , Staphylococcal Infections/microbiology , Bacteria
5.
J Colloid Interface Sci ; 652(Pt B): 1897-1907, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37690297

ABSTRACT

Self-assembly of macroscopic membranes at the interface between self-assembling peptides and aqueous polymer solutions of opposite charge has been explored mostly due to the membranes' unique hierarchical structure of three distinct regions, including a layer of perpendicular fibers. We report here on the formation and characterization of self-assembled membranes made with λ-carrageenan and the cationic ß-sheet peptides, Pro-Lys-(Phe-Lys)5-Pro (PFK). Using SAXS, SEM, ITC, and rheology, we compared these membranes' morphology and physical properties to membranes made with alginate. We recognized that the polysaccharide's single chain conformation, its solution's viscosity, the potential of hydrogen bonding and electrostatic interactions between the polysaccharides and the peptides charged groups, and the strength of these interactions all affect the properties of the resulting membranes. As a result, we identified that an interplay between the polymer-peptide strength of interactions and the stiffness of the polysaccharide's single chain could be used as a route to control the structure-function relationship of the membranes. These results provide valuable information for creating guidelines to design self-assembly membranes with specific properties.

6.
Biol Chem ; 404(10): 909-930, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37555646

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder with currently no cure. Central to the cellular dysfunction associated with this fatal proteinopathy is the accumulation of unfolded/misfolded superoxide dismutase 1 (SOD1) in various subcellular locations. The molecular mechanism driving the formation of SOD1 aggregates is not fully understood but numerous studies suggest that aberrant aggregation escalates with folding instability of mutant apoSOD1. Recent advances on combining organelle-targeting therapies with the anti-aggregation capacity of chemical chaperones have successfully reduce the subcellular load of misfolded/aggregated SOD1 as well as their downstream anomalous cellular processes at low concentrations (micromolar range). Nevertheless, if such local aggregate reduction directly correlates with increased folding stability remains to be explored. To fill this gap, we synthesized and tested here the effect of 9 ER-, mitochondria- and lysosome-targeted chemical chaperones on the folding stability of truncated monomeric SOD1 (SOD1bar) mutants directed to those organelles. We found that compound ER-15 specifically increased the native state stability of ER-SOD1bar-A4V, while scaffold compound FDA-approved 4-phenylbutyric acid (PBA) decreased it. Furthermore, our results suggested that ER15 mechanism of action is distinct from that of PBA, opening new therapeutic perspectives of this novel chemical chaperone on ALS treatment.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Protein Folding , Mutation , Molecular Chaperones
7.
ACS Biomater Sci Eng ; 9(1): 352-362, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36521024

ABSTRACT

The growing resistance of pathogenic bacteria to conventional antibiotics promotes the development of new antimicrobial agents, including peptides. Hydrogels composed of antimicrobial peptides (AMPs) may be applied as topical treatments for skin infection and wound regeneration. The unique antimicrobial and ultrashort-peptide FKF (Phe-Lys-Phe) was recently demonstrated to form bactericidal hydrogels. Here, we sought to improve the cyto-biocompatibility of FKF by combining FKF hydrogels with gelatin. Homogeneous hybrid hydrogels of FKF:gelatin were developed based on a series of self-assembly steps that involved mixing solutions of the two components with no covalent cross-linkers. The hydrogels were characterized for their structural features, dissolution, cyto-biocompatibility, and antibacterial properties. These hybrid hydrogels first release the antibacterial FKF assemblies, leaving the gelatinous fraction of the hydrogel to serve as a scaffold for tissue regeneration. Sponges of these hybrid hydrogels, obtained by lyophilization and rehydrated prior to application, exhibited enhanced antimicrobial activity compared to the hydrogels' formulations.


Subject(s)
Anti-Infective Agents , Hydrogels , Hydrogels/pharmacology , Hydrogels/chemistry , Gelatin/pharmacology , Gelatin/chemistry , Peptides/pharmacology , Peptides/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology
8.
ACS Nano ; 16(8): 12889-12899, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35866668

ABSTRACT

Glucagon is a prominent peptide hormone, playing central roles in the regulation of glucose blood-level and lipid metabolism. Formation of glucagon amyloid fibrils has been previously reported, although no biological functions of such fibrils are known. Here, we demonstrate that glucagon amyloid fibrils catalyze biologically important reactions, including esterolysis, lipid hydrolysis, and dephosphorylation. In particular, we found that glucagon fibrils catalyze dephosphorylation of adenosine triphosphate (ATP), a core metabolic reaction in cell biology. Comparative analysis of several glucagon variants allowed mapping the catalytic activity to an enzymatic pocket-like triad formed at the glucagon fibril surface, comprising the histidyl-serine domain at the N-terminus of the peptide. This study may point to previously unknown physiological roles and pathological consequences of glucagon fibrillation and supports the hypothesis that catalytic activities of native amyloid fibrils play functional roles in human physiology and disease.


Subject(s)
Amyloid , Glucagon , Humans , Glucagon/chemistry , Glucagon/metabolism , Amyloid/chemistry , Protein Binding
9.
Colloids Surf B Biointerfaces ; 212: 112374, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35121429

ABSTRACT

Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to fibril aggregates, amyloids. Extensive research efforts are devoted to developing inhibitors to amyloid aggregates. Here we set to explore functionalized titania (TiO2) nanoparticles (NPs) as potential amyloid inhibiting agents. TiO2 NPs were coated by a catechol derivative, dihydroxy-phenylalanine propanoic acid (DPA), and further conjugated to the amyloids' specific dye Congo-Red (CR). TiO2-DPA-CR NPs were found to target mature fibrils of ß-amyloid (Aß). Moreover, coated NPs incubated with Aß proteins suppressed amyloid fibrillation. TiO2-DPA-CR were found to target amyloids in solution and induce their sedimentation upon centrifugation. This work demonstrates the potential utilization of TiO2-DPA NPs for labeling and facilely separating from solution mature amyloid fibrils.


Subject(s)
Amyloidosis , Nanoparticles , Humans , Adsorption , Amyloid , Amyloid beta-Peptides/metabolism , Titanium
10.
Aesthetic Plast Surg ; 45(6): 2980-2989, 2021 12.
Article in English | MEDLINE | ID: mdl-34041554

ABSTRACT

BACKGROUND: Post-operative infection is a significant complication of breast implant surgery that may require extensive use of antibiotics and surgical interventions. Here, we developed a biomaterial coating that is chemically bonded to silicone implants which delivers antimicrobial ions over time. METHODS: After coating the silicone implants with a "mediator" polymer (γ-PGA), the implants were impregnated with silver (Ag) ions. Antimicrobial effects of these implants were assayed with modified Kirby-Bauer disk diffusion method. The silicone disks were transferred to a plate with fresh bacteria. Control was intended to simulate an intra-operative wash. RESULTS: The Ag-γ-PGA coated silicone demonstrated antimicrobial effects against the most common etiological agents of breast implant infections, including Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Klebsiella pneumoniae. There was no effect of inhibition of bacterial growth around the control silicone or the silicone coated only with γ-PGA. The zone of inhibition was generally larger around the Ag-γ-PGA coated silicone as compared to the silicone irrigated with gentamicin, and continued antibacterial effect was also observed at 48 hours in the Ag-γ-PGA coated silicone for all bacteria groups with the exception of P. aeruginosa. Gentamicin-irrigated silicone did not inhibit bacterial growth at 48 hours. CONCLUSION: The observed antibacterial performance of the Ag-γ-PGA coating as compared to simulated intra-operative antibiotic wash is promising and should be further evaluated to develop the next generation of implants with diminished risk for post-operative implant infections.


Subject(s)
Anti-Infective Agents , Breast Implants , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Breast Implants/adverse effects , Coated Materials, Biocompatible/pharmacology , Gentamicins/pharmacology , Humans , Ions , Silicones , Silver/pharmacology
11.
Colloids Surf B Biointerfaces ; 203: 111751, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33865086

ABSTRACT

Amphiphilic peptides that induce catalysis are interesting alternatives to natural enzymes thanks to robustness of their synthesis and the ability to induce certain types of conformations by specific motifs of amino acid sequences. Various studies aimed at mimicking the activity of serine proteases by designed peptides. Here we demonstrate that the order by which the catalytic triad residues are positioned along amphiphilic ß-strands influences both assembly structures and catalytic activity. A set of three ß-sheet amphiphilic peptides, decorated with different orders of the catalytic triad amino acids, Glu, His and Ser along the strands were evaluated for their catalytic hydrolysis efficiency of p-nitrophenyl acetate (pNPA) substrate. Among the three peptides, Ac-Cys-Phe-Glu-Phe-Ser-Phe-His-Phe-Pro-NH2 (ESH) achieved the greatest catalytic efficiency with a value of 0.19 M-1 s-1, at peptide concentration of 250 µM. This study sheds light on an overlooked factor in designing catalytic amphiphilic assemblies whereby charged residues that make up the active sites, are in fact engaged in intermolecular stabilizing interactions that in turn may hamper their catalytic action.


Subject(s)
Amino Acids , Peptides , Amino Acid Sequence , Catalysis , Hydrolysis
12.
Acta Biomater ; 125: 231-241, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33607306

ABSTRACT

The race drawn against bacteria facing the evolution of antimicrobial resistance fuels research for new drugs and therapeutic strategies. FKF, a tripeptide that is cationic and amphiphilic was examined in light of its potential antimicrobial activity. Acid titration of purified peptide solution, 6% w/v (136 mM), yielded a hydrogel at pH~ 4. Cryo-TEM images of FKF revealed distinct phases formed upon increase in pH, ranging from elongated needles, uniform width fibers, sheets and tubular structures. 1H NMR attested FKF charged states as function of pH, and CD and FTIR measurements indicated that FKF ß-sheet assemblies are held by both π-π stacking and H-bonds. FKF hydrogel displayed bactericidal activity against E. coli and P. aeruginosa with a 3-log reduction in bacterial counts. The hydrogel was also found effective in reducing P. aeruginosa contamination in a skin lesion model in rats. FKF forms a unique antimicrobial peptide-hydrogel, showing neglectable effect in dissolved state, yet only when fibrillary assembled it gains functionality. STATEMENT OF SIGNIFICANCE: Ultra-short peptides are at the frontier of peptide self-assembly research. The tripeptide FKF assumes distinct assembly forms that are a function of pH, for which we have pinpointed the accompanying changes in charge. Made of natural amino acids, FKF forms a pure peptide hydrogel phase, which is intrinsically antimicrobial. We demonstrate that antimicrobial effect is only assumed by the peptide assemblies, posing self-assembly as a pre-requisite for FKF's bactericidal effect. This system provides evidence for the link between specific microscopic peptide assembled structures, macroscopic gel formation and antimicrobial effect, utilized to alleviate bacterial contamination in vivo.


Subject(s)
Anti-Infective Agents , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Peptides , Protein Conformation, beta-Strand , Rats
13.
Int J Pharm ; 596: 120208, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33493601

ABSTRACT

Polymeric nanoparticles may enable delivery of drugs with lower systemic toxicity to solid tumors. Wnt signaling are evolutionary conserved pathways, involved in proliferation and fate decisions. Alterations in Wnt signaling play a pivotal role in various cancer types that promote cancer initiation, growth, metastasis and drug resistance. We designed a new strategy to allow an efficient targeting of both the canonical and the non-canonical Wnt pathways using nanoparticles loaded with inhibitor of Wnt productions-2 (IWP-2). This hydrophobic drug was successfully co-assembled into NPs composed of poly gamma-glutamic acid and a cationic and amphiphilic b-sheet peptide. Aggressive 4T1 breast cancer cells that were treated with IWP-2 loaded NPs gained a significant decrease in tumorigenic capacities attributed to improved IWP solubility, cellular uptake and efficacy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanoparticles , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , Peptides
14.
Nanomedicine (Lond) ; 15(30): 2917-2932, 2020 12.
Article in English | MEDLINE | ID: mdl-33241963

ABSTRACT

Aims: The mechanistic study of the drug carrier-target interactions of mitochondria-unique nanoparticles composed of polypeptide-peptide complexes (mPoP-NPs). Materials & methods: The isolated organelles were employed to address the direct effects of mPoP-NPs on dynamic structure and functional wellbeing of mitochondria. Mitochondria morphology, respiration, membrane potential, reactive oxygen species generation, were examined by confocal microscopy, flow cytometry and oxygraphy. Lonidamine-encapsulated formulation was assessed to evaluate the drug delivery capacity of the naive nanoparticles. Results: The mPoP-NPs do not alter mitochondria structure and performance upon docking to organelles, while successfully delivering drug that causes organelle dysfunction. Conclusion: The study gives insight into interactions of mPoP-NPs with mitochondria and provides substantial support for consideration of designed nanoparticles as biocompatible and efficient mitochondria-targeted platforms.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Drug Delivery Systems , Mitochondria , Peptides
15.
Soft Matter ; 16(44): 10132-10142, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-32812622

ABSTRACT

Hierarchically ordered planar and spherical membranes (sacs) were constructed using amphiphilic and cationic ß-sheet peptides that spontaneously assembled together with negatively charged alginate solution. The system was found to form either a fully developed membrane structure with three distinct regions including characteristic perpendicular fibers or a non-fully developed contact layer lacking these standing fibers, depending on the peptide age, membrane geometry and membrane incubation time. The morphological differences were found to strongly depend on fairly-long incubation time frames that influenced both the peptide's intrinsic alignment and the reaction-diffusion process taking place at the interface. A three-stage mechanism was suggested and key parameters affecting the development process were identified. Stability tests in biologically relevant buffers confirmed the suitability of these membranes for bio applications.


Subject(s)
Alginates , Peptides , Membranes , Protein Conformation, beta-Strand
16.
J Colloid Interface Sci ; 573: 87-95, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32272300

ABSTRACT

Thioflavin T (ThT), a benzothiazole-based fluorophore, is a prominent dye widely employed for monitoring amyloid fibril assembly. Despite the near-universal presumption that ThT binds to ß-sheet domains upon fibrillar surface via hydrophobic forces, the contribution of the positive charge of ThT to fibril binding and concomitant fluorescence enhancement have not been thoroughly assessed. Here we demonstrate a considerable interdependence between ThT fluorescence and electrostatic charges of peptide fibrils. Specifically, by analyzing both fibril-forming synthetic peptides and prominent natural fibrillar peptides, we demonstrate pronounced modulations of ThT fluorescence signal that were solely dependent upon electrostatic interactions between ThT and peptide surface. The results further attest to the fact that fibril ζ-potential rather than pH-dependent assembly of the fibrils constitute the primary factor affecting ThT binding and fluorescence. This study provides the first quantitative assessment of electrostatically driven ThT fluorescence upon adsorption to amyloid fibrils.


Subject(s)
Benzothiazoles/chemistry , Fluorescent Dyes/chemistry , Peptides/chemistry , Fluorescence , Hydrophobic and Hydrophilic Interactions , Particle Size , Static Electricity , Surface Properties
17.
ACS Appl Mater Interfaces ; 11(36): 32670-32678, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31414594

ABSTRACT

Biomaterials folded into nanoparticles (NPs) can be utilized as targeted drug delivery systems for cancer therapy. NPs may provide a vehicle for the anticancer drug lonidamine (LND), which inhibits glycolysis but was suspended from use at the clinical trial stage because of its hepatotoxicity due to poor solubility and pharmacokinetic properties. The NPs prepared by coassembly of the anionic polypeptide poly gamma glutamic acid (γ-PGA) and a designed amphiphilic and positively charged peptide (designated as mPoP-NPs) delivered LND to the mitochondria in cell cultures. In this study, we demonstrate that LND-mPoP-NP effective drug concentrations can be increased to reach therapeutically relevant concentrations. The self-assembled NP solution was subjected to snap-freezing and lyophilization and the resultant powder was redissolved in a tenth of the original volume. The NP size and their ability to target the proximity of the mitochondria of breast cancer cells were both maintained in this new formulation, C-LND-mPoP-NPs. Furthermore, these NPs exhibited 40% better cytotoxicity, relative to the nonlyophilized LND-mPoP-NPs and led to tumor growth inhibition with no adverse side effects upon intravenous administration in a xenograft breast cancer murine model.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Indazoles/therapeutic use , Nanoparticles/therapeutic use , Peptides/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Indazoles/pharmacology , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/metabolism , Nanoparticles/ultrastructure , Peptides/pharmacology , Xenograft Model Antitumor Assays
18.
J Colloid Interface Sci ; 530: 328-337, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29982025

ABSTRACT

Organophosphate compounds that are used as pesticides affect the nervous system by binding irreversibly to the active site of the enzyme acetylcholine esterase (AChE) and disrupting neuro-signaling nerve cells. In this study we characterized adsorption of paraoxon to a set of designed peptides that present different arrangements of the three amino acids of the AChE catalytic site: histidine, glutamic-acid and serine. The peptides set included two ß-strands with no net charge and three ß-hairpins that differ in their net charge. Circular dichroism, Thioflavin T assays and TEM images provided only qualitative insights on paraoxon binding to the different peptides. Paraoxon binding to the different peptides was measured with dialysis membrane tubes filled with the peptide solutions and suspended in a reservoir of paraoxon solution. Among all the tested peptides, the single strand peptide, denoted ssESH exhibited at 100 µM in random conformation prefibrillar state, the maximum paraoxon adsorption, with a binding mol ratio of one paraoxon per two peptides and an estimated equilibrium binding constant 5 ∗ 104 M-1. The three ß-hairpin peptides demonstrated that a net negative charge is unfavorable for paraoxon adsorption. Surface enhanced Raman spectroscopy measurements with ssESH enabled the detection of nanomolar adsorbed concentrations of paraoxon.


Subject(s)
Acetylcholinesterase/chemistry , Catalytic Domain/drug effects , Cholinesterase Inhibitors/pharmacology , Insecticides/pharmacology , Paraoxon/pharmacology , Peptides/chemistry , Acetylcholinesterase/metabolism , Adsorption , Cholinesterase Inhibitors/toxicity , Humans , Insecticides/toxicity , Paraoxon/toxicity , Peptides/metabolism , Protein Conformation, beta-Strand/drug effects , Spectrum Analysis, Raman
19.
RSC Adv ; 8(18): 10072-10080, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-35540811

ABSTRACT

The interest in developing functional biomaterials based on designed peptides has been increasing in recent years. The amphiphilic and anionic ß-sheet peptide Pro-Asp-(Phe-Asp)5-Pro, denoted FD, was previously shown to assemble into a hydrogel that induces adsorption of calcium and phosphate ions and formation of the bone mineral hydroxyapatite. In this study the integrin binding peptide, Arg-Gly-Asp (RGD), was incorporated into the hydrogel to assess its influence on an osteoblast culture. In solutions and in hydrogels FD fibrils dominated the assembly structures for up to 25 mol% FD-RGD incorporation. The cellular density of osteoblasts cultured in hydrogels composed of 25 mol% FD-RGD in FD was higher than that of only FD hydrogel cultures. These results demonstrate that RGD and possibly other cell binding motifs can be combined into amphiphilic and anionic ß-sheet hydrogels, using the design principles of FD and FD-RGD systems, to enhance interactions with cells.

20.
Colloids Surf B Biointerfaces ; 162: 186-192, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29190470

ABSTRACT

Polymeric nanoparticles (NPs) represent an effective platform for drug delivery systems, albeit with various limitations including low drug loading capacity, cytotoxicity and specificity. NPs composed of the negatively charged Polypeptide, poly gamma glutamic acid (γ-PGA) and a designed amphiphilic and cationic ß-sheet Peptide (denoted PoP-NPs) loaded with the drug lonidamine (LND), denoted LND-PoP-NPs were previously used in our lab to successfully target the mitochondria when coated with the peptide (LND-mPoP-NPs). In this study, we improved the drug capacity of the LND-mPoP-NPs in addition to lowering non-specific toxicity associated with the drug deficient mPoP-NPs. LND concentrations in LND-mPoP-NPs were increased (h-LND-mPoP-NPs) and the peptide coating concentration was decreased. The new h-LND-mPoP-NPs formulation shows the ability to carry the drug to the proximity of the mitochondria despite the NP's negative zeta potential.


Subject(s)
Drug Delivery Systems/methods , Mitochondria/drug effects , Nanoparticles/chemistry , Osteoblasts/drug effects , Peptides/chemistry , Polyglutamic Acid/analogs & derivatives , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Liberation , Humans , Hydrophobic and Hydrophilic Interactions , Indazoles/metabolism , Indazoles/pharmacology , Kinetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Nanoparticles/metabolism , Osteoblasts/metabolism , Osteoblasts/ultrastructure , Polyglutamic Acid/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...