Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(2): 023304, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113439

ABSTRACT

We are proposing a compact neutron generator based on a Li beam driver. The proposed neutron generator comprises a laser ion source, a radio-frequency quadrupole linear accelerator (RFQ linac), a drift tube linac, and a target containing protons. In the generator, the lithium ion is used as a projectile instead of protons to utilize the kinematic focusing technique. The technique enables us to enhance the neutron flux without increasing the beam energy, which is important to develop a clean compact neutron generator. Moreover, the combination of a laser ion source and a RFQ linac with the direct plasma injection scheme will provide several tens of mA of a fully ionized lithium beam, which is much higher than that of conventional heavy ion sources comparable with proton drivers. Neutrons are generated by the nuclear reaction of the lithium ions and protons in the beam target. In this paper, we reported the current status of the development. For RFQ, we designed the RFQ rods to accelerate 40 mA of 7Li3+. We fabricated and installed the rods into a cavity, and, as a first test, accelerated 10 mA of C6+ successfully.

2.
Rev Sci Instrum ; 87(11): 113303, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910580

ABSTRACT

Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.

SELECTION OF CITATIONS
SEARCH DETAIL