Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 146: 259-65, 2016.
Article in English | MEDLINE | ID: mdl-26695261

ABSTRACT

Modified matrix volatilization (MV) method has been described to characterize high purity germanium material of 7 N (99.99999%) purity. Transport of both, the chlorine gas generated in-situ in this method and the argon gas (carrier) is fine controlled by means of a mass flow controller. This enabled both uniform reaction of chlorine gas with the germanium matrix and smooth removal of germanium matrix as its chloride. This resulted in improvement in the reproducibility of the analytical results. The use of quartz reaction vessel has lead to the reduction in the process blank levels. The combined effect of these modifications in the MV setup has resulted in very consistent and low process blanks and hence improved detection limits of this method. Applicability of the method has been expanded to rare earth elements and other elements after examining their recoveries. The quantification is done by using inductively coupled plasma quadrupole mass spectrometer (ICP-QMS) and continuum source graphite furnace atomic absorption spectrometry (CS-GFAAS). In the absence of certified reference materials for high pure germanium, the accuracy of the method is established by spike recovery tests. The precision of the method has been found to vary from 1 to 30% for concentrations between 1 and 30 ng g(-1). The limits of detection (LOD) for the target analytes are found to be between 18 and 0.033 ng g(-1).


Subject(s)
Germanium/analysis , Mass Spectrometry/methods , Spectrophotometry, Atomic/methods , Graphite/chemistry , Limit of Detection , Volatilization
2.
Talanta ; 65(5): 1270-8, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-18969941

ABSTRACT

Multielemental determination and the assessment of purity of cobalt metal used in the preparation of Ni-based super-alloys have been carried out by glow discharge quadrupole mass spectrometry (GD-QMS). Relative sensitivity factors (RSF) generated from certified iron matrix reference samples (NIST 663 and 664 low alloy steel pin standards) could be used for the determination of different trace element constituents of the sample. Different wet chemical procedures were also carried out for the determination of the trace constituents in the sample. The GD-QMS results are in reasonably good agreement with those obtained from wet chemical procedures, validating the use of the RSF values generated on low alloy steel standards for the computation of trace element concentrations in cobalt metal. A variety of molecular ions formed through the reaction of cobalt (matrix) with the discharge gas (argon) were also detected.

SELECTION OF CITATIONS
SEARCH DETAIL
...