Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 8(3): e2724, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358373

ABSTRACT

The promyelocytic leukemia protein (PML) is expressed in most normal human tissues and forms nuclear bodies (NBs) that have roles in gene regulation and cellular processes such as DNA repair, cell cycle control, and cell fate decisions. Using murine C2C12 myoblasts, we demonstrate that activation of skeletal muscle differentiation results in loss of PML and PML NBs prior to myotube fusion. Myotube formation was associated with marked chromatin reorganization and the relocalization of DAXX from PML NBs to chromocentres. MyoD expression was sufficient to cause PML NB loss, and silencing of PML induced DAXX relocalization. Fusion of C2C12 cells using the reptilian reovirus p14 fusogenic protein failed to disrupt PML NBs yet still promoted DAXX redistribution and loss; whereas ectopic expression of PML in differentiated cells only partially restored PML NB formation and DAXX localization at NBs. Finally, we determined that the C-terminal SUMO-interacting motif of DAXX is required for its colocalization with ATRX in heterochromatin domains during myotube formation. These data support a model in which activation of myogenic differentiation results in PML NB loss, chromatin reorganization and DAXX relocalization, and provides a paradigm for understanding the consequence of PML loss in other cellular contexts, such as during cancer development and progression.


Subject(s)
Carrier Proteins/metabolism , Heterochromatin/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Models, Biological , Muscle Development/physiology , Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein/metabolism , Amino Acid Motifs , Animals , Carrier Proteins/genetics , Cell Line , Co-Repressor Proteins , Heterochromatin/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Molecular Chaperones , Muscle Fibers, Skeletal/cytology , Myoblasts/cytology , Nuclear Proteins/genetics , Promyelocytic Leukemia Protein/genetics , Protein Transport/physiology
2.
Article in English | MEDLINE | ID: mdl-26500702

ABSTRACT

BACKGROUND: The death domain-associated protein (DAXX) collaborates with accessory proteins to deposit the histone variant H3.3 into mouse telomeric and pericentromeric repeat DNA. Pericentromeric repeats are the main genetic contributor to spatially discrete, compact, constitutive heterochromatic structures called chromocentres. Chromocentres are enriched in the H3K9me3 histone modification and serve as integral, functionally important components of nuclear organization. To date, the role of DAXX as an H3.3-specific histone chaperone has been investigated primarily using biochemical approaches which provide genome-wide views on cell populations and information on changes in local chromatin structures. However, the global chromatin and subnuclear reorganization events that coincide with these changes remain to be investigated. RESULTS: Using electron spectroscopic imagine (ESI), a specialized form of energy-filtered transmission electron microscopy that allows us to visualize chromatin domains in situ with high contrast and spatial resolution, we show that in the absence of DAXX, H3K9me3-enriched domains are structurally altered and become uncoupled from major satellite DNA. In addition, the structural integrity of nucleoli and the organization of ribosomal DNA (rDNA) are disrupted. Moreover, the absence of DAXX leads to chromatin that is more sensitive, on a global level, to micrococcal nuclease digestion. CONCLUSIONS: We identify a novel role of DAXX as a major regulator of subnuclear organization through the maintenance of the global heterochromatin structural landscape. As well, we show, for the first time, that the loss of a histone chaperone can have severe consequences for global nuclear organization.

3.
Nucleus ; 6(4): 254-60, 2015.
Article in English | MEDLINE | ID: mdl-26107557

ABSTRACT

Cell senescence, the permanent withdrawal of a cell from the cell cycle, is characterized by dramatic, cytological scale changes to DNA condensation throughout the genome. While prior emphasis has been placed on increases in heterochromatin, such as the formation of compact Senescent Associated Heterochromatin Foci (SAHF) structures, our recent findings showed that SAHF formation is preceded by the unravelling of constitutive heterochromatin into visibly extended structures, which we have termed Senescent Associated Distension of Satellites or SADS. Interestingly, neither of these marked changes in DNA condensation appear to be mediated by changes in canonical, heterochromatin-associated histone modifications. Rather, several observations suggest that these events may be facilitated by changes in LaminB1 levels and/or other factors that control higher-order chromatin architecture. Here, we review what is known about senescence-associated chromatin reorganization and present preliminary results using high-resolution microscopy techniques to show that each peri/centromeric satellite in senescent cells is comprised of several condensed domains connected by thin fibrils of satellite DNA. We then discuss the potential importance of these striking changes in chromatin condensation for cell senescence, and also as a model to provide a needed window into the higher-order packaging of the genome.


Subject(s)
Cellular Senescence , Heterochromatin/genetics , Protein Folding , Cell Cycle , Cell Line , Chromatin Assembly and Disassembly , Heterochromatin/metabolism , Histones/genetics , Histones/metabolism , Humans
4.
Micron ; 43(2-3): 150-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22172345

ABSTRACT

The microscope has been indispensable to the last century of chromatin structure research. Microscopy techniques have revealed that the three-dimensional location of chromatin is not random but represents a further manifestation of a highly compartmentalized cell nucleus. Moreover, the structure and location of genetic loci display cell type-specific differences and relate directly to the state of differentiation. Advances to bridge imaging with genetic, molecular and biochemical approaches have greatly enhanced our understanding of the interdependence of chromatin structure and nuclear function in mammalian cells. In this review we discuss the current state of chromatin structure research in relationship to the variety of microscopy techniques that have contributed to this field.


Subject(s)
Chromatin/metabolism , Chromatin/ultrastructure , Microscopy/methods , Cytological Techniques/methods , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...