Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(14): e2321336121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38530888

ABSTRACT

Host-directed therapies (HDTs) represent an emerging approach for bacterial clearance during tuberculosis (TB) infection. While most HDTs are designed and implemented for immuno-modulation, other host targets-such as nonimmune stromal components found in pulmonary granulomas-may prove equally viable. Building on our previous work characterizing and normalizing the aberrant granuloma-associated vasculature, here we demonstrate that FDA-approved therapies (bevacizumab and losartan, respectively) can be repurposed as HDTs to normalize blood vessels and extracellular matrix (ECM), improve drug delivery, and reduce bacterial loads in TB granulomas. Granulomas feature an overabundance of ECM and compressed blood vessels, both of which are effectively reduced by losartan treatment in the rabbit model of TB. Combining both HDTs promotes secretion of proinflammatory cytokines and improves anti-TB drug delivery. Finally, alone and in combination with second-line antitubercular agents (moxifloxacin or bedaquiline), these HDTs significantly reduce bacterial burden. RNA sequencing analysis of HDT-treated lung and granuloma tissues implicates up-regulated antimicrobial peptide and proinflammatory gene expression by ciliated epithelial airway cells as a putative mechanism of the observed antitubercular benefits in the absence of chemotherapy. These findings demonstrate that bevacizumab and losartan are well-tolerated stroma-targeting HDTs, normalize the granuloma microenvironment, and improve TB outcomes, providing the rationale to clinically test this combination in TB patients.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Rabbits , Bevacizumab/pharmacology , Losartan/pharmacology , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Granuloma , Latent Tuberculosis/microbiology
2.
Antimicrob Resist Infect Control ; 10(1): 36, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33588951

ABSTRACT

INTRODUCTION: According to the Centers for Disease Control's 2015 Hospital Acquired Infection Hospital Prevalence Survey, 1 in 31 hospital patients was infected with at least one nosocomial pathogen while being treated for unrelated issues. Many studies associate antibiotic administration with nosocomial infection occurrence. However, to our knowledge, there is little to no direct evidence of antibiotic administration selecting for nosocomial opportunistic pathogens. AIM: This study aims to confirm gut microbiota shifts in an animal model of antibiotic treatment to determine whether antibiotic use favors pathogenic bacteria. METHODOLOGY: We utilized next-generation sequencing and in-house metagenomic assembly and taxonomic assignment pipelines on the fecal microbiota of a urinary tract infection mouse model with and without antibiotic treatment. RESULTS: Antibiotic therapy decreased the number of detectable species of bacteria by at least 20-fold. Furthermore, the gut microbiota of antibiotic treated mice had a significant increase of opportunistic pathogens that have been implicated in nosocomial infections, like Acinetobacter calcoaceticus/baumannii complex, Chlamydia abortus, Bacteroides fragilis, and Bacteroides thetaiotaomicron. Moreover, antibiotic treatment selected for antibiotic resistant gene enriched subpopulations for many of these opportunistic pathogens. CONCLUSIONS: Oral antibiotic therapy may select for common opportunistic pathogens responsible for nosocomial infections. In this study opportunistic pathogens present after antibiotic therapy harbored more antibiotic resistant genes than populations of opportunistic pathogens before treatment. Our results demonstrate the effects of antibiotic therapy on induced dysbiosis and expansion of opportunistic pathogen populations and antibiotic resistant subpopulations of those pathogens. Follow-up studies with larger samples sizes and potentially controlled clinical investigations should be performed to confirm our findings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cross Infection/microbiology , Gastrointestinal Microbiome , Opportunistic Infections/microbiology , Animals , Anti-Bacterial Agents/adverse effects , Bacteria/classification , Dysbiosis/chemically induced , Female , Mice , Mice, Inbred BALB C
3.
BMC Genomics ; 21(1): 263, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32228448

ABSTRACT

BACKGROUND: Emergence of antibiotic resistance is a global public health concern. The relationships between antibiotic use, the gut community composition, normal physiology and metabolism, and individual and public health are still being defined. Shifts in composition of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) after antibiotic treatment are not well-understood. METHODS: This project used next-generation sequencing, custom-built metagenomics pipeline and differential abundance analysis to study the effect of antibiotic monotherapy on resistome and taxonomic composition in the gut of Balb/c mice infected with E. coli via transurethral catheterization to investigate the evolution and emergence of antibiotic resistance. RESULTS: There is a longitudinal decrease of gut microbiota diversity after antibiotic treatment. Various ARGs are enriched within the gut microbiota despite an overall reduction of the diversity and total amount of bacteria after antibiotic treatment. Sometimes treatment with a specific class of antibiotics selected for ARGs that resist antibiotics of a completely different class (e.g. treatment of ciprofloxacin or fosfomycin selected for cepA that resists ampicillin). Relative abundance of some MGEs increased substantially after antibiotic treatment (e.g. transposases in the ciprofloxacin group). CONCLUSIONS: Antibiotic treatment caused a remarkable reduction in diversity of gut bacterial microbiota but enrichment of certain types of ARGs and MGEs. These results demonstrate an emergence of cross-resistance as well as a profound change in the gut resistome following oral treatment of antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metagenomics/methods , Animals , Drug Resistance, Microbial/genetics , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred BALB C
4.
J Pers Med ; 9(2)2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31032818

ABSTRACT

As one of the most widespread metabolic diseases, atherosclerosis affects nearly everyone as they age; arteries gradually narrow from plaque accumulation over time reducing oxygenated blood flow to central and periphery causing heart disease, stroke, kidney problems, and even pulmonary disease. Personalized medicine promises to bring treatments based on individual genome sequencing that precisely target the molecular pathways underlying atherosclerosis and its symptoms, but to date only a few genotypes have been identified. A promising alternative to this genetic approach is the identification of pathways altered in atherosclerosis by transcriptome analysis of atherosclerotic tissues to target specific aspects of disease. Transcriptomics is a potentially useful tool for both diagnostics and discovery science, exposing novel cellular and molecular mechanisms in clinical and translational models, and depending on experimental design to identify and test novel therapeutics. The cost and time required for transcriptome analysis has been greatly reduced by the development of next generation sequencing. The goal of this resource article is to provide background and a guide to appropriate technologies and downstream analyses in transcriptomics experiments generating ever-increasing amounts of gene expression data.

5.
J Pers Med ; 9(2)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987214

ABSTRACT

The rapid expansion of transcriptomics and affordability of next-generation sequencing (NGS) technologies generate rocketing amounts of gene expression data across biology and medicine, including cancer research. Concomitantly, many bioinformatics tools were developed to streamline gene expression and quantification. We tested the concordance of NGS RNA sequencing (RNA-seq) analysis outcomes between two predominant programs for read alignment, HISAT2, and STAR, and two most popular programs for quantifying gene expression in NGS experiments, edgeR and DESeq2, using RNA-seq data from breast cancer progression series, which include histologically confirmed normal, early neoplasia, ductal carcinoma in situ and infiltrating ductal carcinoma samples microdissected from formalin fixed, paraffin embedded (FFPE) breast tissue blocks. We identified significant differences in aligners' performance: HISAT2 was prone to misalign reads to retrogene genomic loci, STAR generated more precise alignments, especially for early neoplasia samples. edgeR and DESeq2 produced similar lists of differentially expressed genes, with edgeR producing more conservative, though shorter, lists of genes. Gene Ontology (GO) enrichment analysis revealed no skewness in significant GO terms identified among differentially expressed genes by edgeR versus DESeq2. As transcriptomics of FFPE samples becomes a vanguard of precision medicine, choice of bioinformatics tools becomes critical for clinical research. Our results indicate that STAR and edgeR are well-suited tools for differential gene expression analysis from FFPE samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...