Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731562

ABSTRACT

Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 µM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 µM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.


Subject(s)
Antiprotozoal Agents , Boron Compounds , Leishmania major , Molecular Docking Simulation , Trypanosoma brucei brucei , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemical synthesis , Trypanosoma brucei brucei/drug effects , Humans , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Leishmania major/drug effects , Drug Design , Structure-Activity Relationship , Cell Line , Molecular Structure , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Oxidoreductases
2.
Molecules ; 28(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630363

ABSTRACT

Industrial activity has raised significant concerns regarding the widespread pollution caused by metal ions, contaminating ecosystems and causing adverse effects on human health. Therefore, the development of sensors for selective and sensitive detection of these analytes is extremely important. In this regard, an azo dye, Dabcyl 2, was synthesised and investigated for sensing metal ions with environmental and industrial relevance. The cation binding character of 2 was evaluated by colour changes as seen by the naked eye, UV-Vis and 1H NMR titrations in aqueous mixtures of SDS (0.02 M, pH 6) solution with acetonitrile (99:1, v/v). Out of the several cations tested, chemosensor 2 had a selective response for Pd2+, Sn2+ and Fe3+, showing a remarkable colour change visible to the naked eye and large bathochromic shifts in the UV-Vis spectrum of 2. This compound was very sensitive for Pd2+, Sn2+ and Fe3+, with a detection limit as low as 5.4 × 10-8 M, 1.3 × 10-7 M and 5.2 × 10-8 M, respectively. Moreover, comparative studies revealed that chemosensor 2 had high selectivity towards Pd2+ even in the presence of other metal ions in SDS aqueous mixtures.

3.
Sensors (Basel) ; 23(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37571777

ABSTRACT

Optical chemosensors are a practical tool for the detection and quantification of important analytes in biological and environmental fields, such as Cu2+ and Fe3+. To the best of our knowledge, a BODIPY derivative capable of detecting Cu2+ and Fe3+ simultaneously through a colorimetric response has not yet been described in the literature. In this work, a meso-triphenylamine-BODIPY derivative is reported for the highly selective detection of Cu2+ and Fe3+. In the preliminary chemosensing study, this compound showed a significant color change from yellow to blue-green in the presence of Cu2+ and Fe3+. With only one equivalent of cation, a change in the absorption band of the compound and the appearance of a new band around 700 nm were observed. Furthermore, only 10 equivalents of Cu2+/Fe3+ were needed to reach the absorption plateau in the UV-visible titrations. Compound 1 showed excellent sensitivity toward Cu2+ and Fe3+ detection, with LODs of 0.63 µM and 1.06 µM, respectively. The binding constant calculation indicated a strong complexation between compound 1 and Cu2+/Fe3+ ions. The 1H and 19F NMR titrations showed that an increasing concentration of cations induced a broadening and shifting of the aromatic region peaks, as well as the disappearance of the original fluorine peaks of the BODIPY core, which suggests that the ligand-metal (1:2) interaction may occur through the triphenylamino group and the BODIPY core.

4.
Molecules ; 28(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37110560

ABSTRACT

Unnatural amino acids with enhanced properties, such as increased complexing ability and luminescence, are considered to be highly attractive building blocks for bioinspired frameworks, such as probes for biomolecule dynamics, sensitive fluorescent chemosensors, and peptides for molecular imaging, among others. Therefore, a novel series of highly emissive heterocyclic alanines bearing a benzo[d]oxazolyl unit functionalized with different heterocyclic π-spacers and (aza)crown ether moieties was synthesized. The new compounds were completely characterized using the usual spectroscopic techniques and evaluated as fluorimetric chemosensors in acetonitrile and aqueous mixtures in the presence of various alkaline, alkaline-earth, and transition metal ions. The different crown ether binding moieties as well as the electronic nature of the π-bridge allowed for fine tuning of the sensory properties of these unnatural amino acids towards Pd2+ and Fe3+, as seen by spectrofluorimetric titrations.

5.
Molecules ; 27(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36432168

ABSTRACT

Fluorescence-based probes represent a powerful tool for noninvasive imaging of living systems in real time and with a high temporal and spatial resolution. Amongst several known fluorophores, 3-difluoroborodipyrromethene (BODIPY) derivatives have become a cornerstone for innovative fluorescent labelling applications, mainly due to their advantageous features including their facile synthesis, structural versatility and exceptional photophysical properties. In this context, we report a BODIPY-based fluorescent probe for imaging of lysosomes in living cells. The BODIPY derivative displayed a remarkable fluorescence enhancement at low pH values with a pKa* of 3.1. In vitro studies by confocal microscopy in HeLa cells demonstrated that the compound was able to permeate cell membrane and selectively label lysosome whilst remaining innocuous to the cell culture at the maximum concentration tested. Herein, the BODIPY derivative holds the promise of investigating lysosomal dynamics and function in living cells through fluorescence imaging.


Subject(s)
Fluorescent Dyes , Lysosomes , Humans , Fluorescent Dyes/chemistry , HeLa Cells , Lysosomes/metabolism , Hydrogen-Ion Concentration
6.
Nanomaterials (Basel) ; 11(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34947750

ABSTRACT

Organic-inorganic hybrids (OIH) are materials that can be easily synthesized by the sol-gel method and combine the advantages of organic and inorganic moieties within a single polymeric matrix. Imidazole derivatives are versatile organic compounds that can change their optical properties with the variation of pH due to the protonation or deprotonation of the nitrogen atoms. This work reports the preparation of different OIHs doped with different contents of two imidazole compounds (3a,b). The obtained materials were characterized structurally by FTIR, and the dielectric properties were studied by electrochemical impedance spectroscopy. The optical properties were studied by UV-Vis absorption and fluorescence spectroscopies. The FTIR analysis showed that the presence of the imidazole does not change the structural properties of the matrices. The normalized resistance values obtained for the doped matrices ranged between 8.57 and 9.32 Ω cm2, all being higher than the undoped matrix. The σ ranged between 9.49 and 10.28 S cm-1, being all higher than the pure OIH samples. Compound 3a showed a maximum absorption peak at 390 nm, which is present in the OIH spectra, proving the presence of the compound. In the case of compound 3b, a maximum absorption wavelength at 412 nm was found, and the compound peak was not clear, which may indicate that an interaction between the compound and the matrix occurred. A synergetic effect between the intrinsic emission of the matrix and the fluorescence of 3a is found on the OIH-doped matrices.

7.
Polymers (Basel) ; 12(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198219

ABSTRACT

This manuscript describes the synthesis and characterization of five new organic-inorganic hybrid (OIH) sol-gel materials that were obtained from a functionalized siloxane 3-glycidoxypropyltrimethoxysilane (GPTMS) by the reaction with the new Jeffamine®, namely three different diamines, i.e., EDR-148, RFD-270, and THF-170, a secondary diamine, i.e., SD-2001, and a triamine, i.e., T-403. The OIH sol-gel materials were characterized by UV-visible absorption spectrophotometry, steady-state photoluminescence spectroscopy, and electrochemical impedance spectroscopy. The reported OIH sol-gel materials showed that, with the exception of the samples prepared with Jeffamine® SD-2001, the transmittance values ranged between 61% and 79%. Regarding the capacitance data, the values reported changed between 0.008 and 0.013 nF cm-2. Due to their optical and electrical properties these new OIH materials show promising properties for applications as support films in an optical sensor area such as fiber sensor devices. Studies to assess the chemical stability of the OIH materials in contact with cement pastes after 7, 14, and 28 days were also performed. The samples prepared with THF-170 and GPTMS, when compared to the samples prepared with RFD-270 and T-403, exhibited improved behavior in the cement paste (alkaline environment), showing promising properties for application as support film in optical fiber sensors in the civil engineering field.

8.
Nanoscale Adv ; 1(11): 4339-4346, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-36134409

ABSTRACT

Dipeptide biomaterials are strong piezoelectric materials that can convert applied mechanical forces into electricity. We have developed large-scale hybrid electrospun arrays containing N-tert-butoxycarbonyl (Boc) diphenylalanine in the form of nanotubes embedded in biocompatible polymers. These nanofibers exhibit strong piezoelectric properties when a periodic mechanical force is applied. The nanostructured hybrid materials were produced by the electrospinning technique. Optical absorption measurements show four bands in the spectral region 240-280 nm indicating quantum confinement due to nanotube formation of Boc-diphenylalanine in dichloromethane solutions. A strong blue photoluminescence emission was observed from nanotubes crystallized inside the fiber arrays during the electrospinning process. These two dimensional hybrid biomaterial structures are able to generate voltage, current and density power of up to 30 V, 300 nA and 2.3 µW cm-2, respectively, when a periodical force of 1.5 N is applied. The dipeptide-polymer electrospun arrays can power several liquid-crystal display panels and may be used for biomedical applications and as bio-energy sources.

9.
ACS Omega ; 3(10): 12893-12904, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30411023

ABSTRACT

A series of push-pull heterocyclic N,N-diphenylhydrazones were prepared to study the effect of structural modifications (different π-spacers and electron-withdrawing groups) on the optical (linear and nonlinear) and electronic properties of the molecules. The photovoltaic response of dye-sensitized solar cells assembled using nanocrystalline titania photosensitized with the synthesized dyes was also studied. These heterocyclic push-pull conjugated dyes involve N,N-diphenylhydrazones as electron donors linked to bithiophene or thieno[3,2-b]thiophene spacers and were functionalized with carboxylic acid, cyanoacetic acid, or dicyanovinyl acceptor groups. A combination of Suzuki-Miyaura cross-coupling, Vilsmeier formylation, and condensation reactions was used to synthesize the intermediates and final products. Density functional theory (DFT) and time dependent-DFT calculations were used to obtain information on conformation, electronic structure, and electron distribution, both for the free dyes and those adsorbed on TiO2. The results of this multidisciplinary study indicate that dyes 5b and 6b have the strongest second-order nonlinear optical response with hyperpolarizability values in the range of ß = 2330 × 10-30 to 2750 × 10-30 esu, whereas photovoltaic power conversion efficiencies reach values in the range of 0.7-3.0% for dyes 5a-b and 7c and were enhanced by coadsorbing deoxycholic acid (0.8-5.1%).

10.
Molecules ; 23(11)2018 Nov 18.
Article in English | MEDLINE | ID: mdl-30453681

ABSTRACT

A series of π-conjugated molecules, based on pyridazine and thiophene heterocycles 3a⁻e, were synthesized using commercially, or readily available, coupling components, through a palladium catalyzed Suzuki-Miyaura cross-coupling reaction. The electron-deficient pyridazine heterocycle was functionalized by a thiophene electron-rich heterocycle at position six, and different (hetero)aromatic moieties (phenyl, thienyl, furanyl) were functionalized with electron acceptor groups at position three. Density Functional Theory (DFT) calculations were carried out to obtain information on the conformation, electronic structure, electron distribution, dipolar moment, and molecular nonlinear response of the synthesized push-pull pyridazine derivatives. Hyper-Rayleigh scattering in 1,4-dioxane solutions, using a fundamental wavelength of 1064 nm, was used to evaluate their second-order nonlinear optical properties. The thienylpyridazine functionalized with the cyano-phenyl moiety exhibited the largest first hyperpolarizability (ß = 175 × 10-30 esu, using the T convention) indicating its potential as a second harmonic generation (SHG) chromophore.


Subject(s)
Models, Theoretical , Oxidative Coupling , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridazines/pharmacology , Spectrum Analysis
11.
Amino Acids ; 49(5): 921-930, 2017 05.
Article in English | MEDLINE | ID: mdl-28197734

ABSTRACT

Novel thienyl and bithienyl amino acids with different substituents were obtained by a multicomponent Ugi reaction between a heterocyclic aldehyde, an amine, an acid and an isocyanide. Due to the presence of the sulphur heterocycle at the side chain, these unnatural amino acids are highly emissive and bear extra electron donating atoms so they were tested for their ability to act as fluorescent probes and chemosensors in the recognition of biomedically relevant ions in acetonitrile and acetonitrile/water solutions. The results obtained from spectrophotometric/spectrofluorimetric titrations in the presence of organic and inorganic anions, and alkaline; alkaline-earth and transition metal cations indicated that the bithienyl amino acid bearing a methoxy group is a selective colorimetric chemosensor for Cu2+, while the other (bi)thienyl amino acids act as fluorimetric chemosensors with high sensitivity towards Fe3+ and Cu2+ in a metal-ligand complex with 1:2 stoichiometry. The photophysical and ion sensing properties of these amino acids confirm their potential as fluorescent probes suitable for incorporation into peptidic frameworks with chemosensory ability.


Subject(s)
Amino Acids/chemical synthesis , Biomimetic Materials/chemical synthesis , Copper/analysis , Fluorescent Dyes/chemical synthesis , Iron/analysis , Aldehydes/chemistry , Amines/chemistry , Amino Acids/chemistry , Biomimetic Materials/chemistry , Cations , Coordination Complexes/chemistry , Cyanides/chemistry , Fluorescent Dyes/chemistry , Heterocyclic Compounds/chemistry , Sensitivity and Specificity , Solutions , Spectrometry, Fluorescence/methods , Thiophenes/chemistry
12.
ACS Omega ; 2(12): 9268-9279, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-29302638

ABSTRACT

The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push-pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine-thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20-64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%.

13.
Chem Commun (Camb) ; 52(29): 5132-5, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26990527

ABSTRACT

Push-pull bithienylpyrrole-based azo dyes exhibit thermal isomerisation rates as fast as 1.4 µs in acetonitrile at 298 K becoming, thus, the fastest neutral azo dyes reported so far. These remarkably low relaxation times can be transferred into liquid-crystalline matrices enabling light-triggered oscillations in the optical density of the final material up to 11 kHz under ambient conditions.

14.
J Org Chem ; 79(22): 10752-61, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25365505

ABSTRACT

Four imidazoanthraquinone derivatives (2a-d) were synthesized and characterized and their coordination behavior against selected anions and cations tested. Acetonitrile solutions of probes showed charge-transfer absorptions in the 407-465 nm range. The four probes emitted in the 533-571 nm interval. The recognition ability of 2a-d was evaluated in the presence of F(-), Cl(-), Br(-), I(-), OCN(-), BzO(-), ClO4(-), AcO(-), HSO4(-), H2PO4(-), and CN(-). Only F(-), AcO(-), and H2PO4(-) induced a new red-shifted absorption band that was attributed to a deprotonation process involving the amine moiety of the imidazole ring. Moreover, upon increasing quantities of F(-), AcO(-), and H2PO4(-), moderate quenching was induced in the emission of 2a-d together with the appearance of a new red-shifted band. The UV-visible and emission behavior of the four probes in the presence of Cu(2+), Co(2+), Mg(2+), Fe(3+), Ba(2+), Fe(2+), Ni(2+), Ca(2+), Zn(2+), Pb(2+), Cd(2+), Cr(3+), Al(3+), K(+), and Li(+) was also assessed. Only addition of Fe(3+), Cr(3+), and Al(3+) caused a new blue-shifted band in 2a-d that was ascribed to a preferential coordination with the acceptor part of the probes. Moreover, an important quenching of the emission was observed which was ascribed to the interaction between these trivalent cations and 2a-d.


Subject(s)
Anions/chemistry , Anthraquinones/chemistry , Anthraquinones/chemical synthesis , Cations/chemistry , Metals/chemistry , Acetonitriles/chemistry , Molecular Structure , Spectrometry, Fluorescence
15.
Chem Commun (Camb) ; 50(51): 6704-6, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24728417

ABSTRACT

Benzothiazole-pyrrole-based azo dyes greatly enhance their thermal isomerisation rate by up to 160 times when they are under the influence of the nematic mean field yielding the LC-based photochromic oscillators with the highest oscillation frequencies reported so far (2.6 kHz at 298 K).

16.
Photochem Photobiol Sci ; 13(3): 492-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24317329

ABSTRACT

The demand for dyes with solvatochromic properties has increased in the last few years, mainly due to their wide range of applications in the analytical and industrial fields, such as in the textile industry. The phenomenon of solvatochromism is associated with the differential solvation of the ground and excited states of the solvatochromic compounds, leading to an important tool for the study of the nature of solute-solvent interactions. In this paper we report the synthesis of new bis(indolyl)methane derivatives bearing arylthiophene spacers (2a-d) functionalized with electron-donating and electron-withdrawing groups, and the photophysical studies in different solvents, such as ethanol, acetonitrile, dichloromethane, trichloromethane, dimethylsulfoxide, diethylether and 1,4-dioxane. Aiming to explore their solvatochromic behaviour in the ground and excited states, all solvents employed have different hydrogen-bond donor abilities. The largest colour modifications were visualized for compound 2b, the solution colours of which are orange in DMSO, blue in trichloromethane, green in dichloromethane and purple in 1,4-dioxane. A negative solvatochromism was observed in 2b and a positive one in 2a, 2c and 2d.


Subject(s)
Coloring Agents/chemistry , Coloring Agents/chemical synthesis , Indoles/chemistry , Indoles/chemical synthesis , Absorption , Acetonitriles/chemistry , Chloroform/chemistry , Dimethyl Sulfoxide/chemistry , Dioxanes/chemistry , Electrons , Ethanol/chemistry , Ether/chemistry , Hydrogen Bonding , Light , Methylene Chloride/chemistry , Molecular Structure , Solvents/chemistry , Spectrum Analysis , Ultraviolet Rays
17.
J Org Chem ; 78(22): 11389-95, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24164508

ABSTRACT

The synthesis and comprehensive characterization of the excited states of four novel triphenylamine-benzimidazole derivatives has been undertaken in solution (ethanol and methylcyclohexane) at room temperature. This includes the determination of the absorption, fluorescence, and triplet-triplet absorption spectra, together with quantum yields of fluorescence, internal conversion, intersystem crossing, and singlet oxygen. From the overall data the radiative and radiationless rate constants could be obtained, and it is shown that the compounds are highly emissive with the radiative decay dominating, with more than 70% of the quanta loss through this deactivation channel. The basic structure of the triphenylamine-benzimidazole derivatives (1a) was modified at position 5 of the heterocyclic moiety with electron-donating (OH (1b), OCH3 (1c)) or electron-withdrawing groups (CN, (1d)). It was found that the photophysical properties remain basically unchanged with the different substitutions, although a marked Stokes shift was observed with 1d. The presence and nature of a charge-transfer transition is discussed with the help of theoretical (DFT and TDFT) data. All compounds displayed exceptionally high thermal stability (between 399 and 454 °C) as seen by thermogravimetric analysis.

18.
Photochem Photobiol Sci ; 11(11): 1756-66, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23075995

ABSTRACT

Photophysical and TPA properties of series of push-pull aryl(bi)thiophene chromophores bearing electron-donating (D) and electron-withdrawing (A) end-groups of increasing strength are presented. All compounds show an intense intramolecular charge transfer (ICT) absorption band in the visible region. Increasing the D and/or A strength as well as the length of the conjugated path induces bathochromic and hyperchromic shifts of the absorption band as reported for analogous push-pull polyenes. Yet, in contrast with corresponding push-pull polyenes, a significant increase in fluorescence is observed. In particular, chromophores built from a phenyl-bithienyl conjugated path and bearing strong D and A end-groups were found to combine very large one and two-photon brightness as well as strong emission in the red/NIR region. These molecules hold promise as biphotonic fluorescent probes for bioimaging.

19.
Org Biomol Chem ; 10(36): 7418-28, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22868486

ABSTRACT

A family of heterocyclic thiosemicarbazone dyes (3a-f and 4) containing furyl groups was synthesized in good yields, characterized and their response in acetonitrile in the presence of selected anions was studied. Acetonitrile solutions of 3a-f and 4 showed absorption bands in the 335-396 nm range which are modulated by the electron donor or acceptor strength of the heterocyclic systems appended to the thiosemicarbazone moiety. Fluoride, chloride, bromide, iodide, dihydrogen phosphate, hydrogen sulphate, nitrate, acetate and cyanide anions were used in recognition studies. From these anions, only sensing features were seen for fluoride, cyanide, acetate and dihydrogen phosphate. Two clearly different chromo-fluorogenic behaviours were observed: (i) a small shift of the absorption band due to the coordination of the anions with the thiourea protons and (ii) the appearance of a new red shifted band due to deprotonation. For the latter effect, a change in the colour of solution from pale yellow to purple was observed. Fluorescence studies were also in agreement with the different effects observed in the UV/Vis titrations. In this case, hydrogen bonding interactions were visible through the enhancement of the emission band, whereas deprotonation induced the appearance of a new red-shifted emission. Logarithms of stability constants for the two processes (complex formation + deprotonation) for receptors in the presence of fluoride and acetate anions were determined from spectrophotometric titrations using the HypSpec V1.1.18 program. Semi-empirical calculations to evaluate the hydrogen-donating ability of the receptors and a prospective electrochemical characterization of compound in the presence of fluoride were also performed.


Subject(s)
Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Furans/chemistry , Thiosemicarbazones/chemistry , Thiosemicarbazones/chemical synthesis , Acetates/chemistry , Acetonitriles/chemistry , Anions/chemistry , Bromides/chemistry , Chlorides/chemistry , Cyanides/chemistry , Fluorides/chemistry , Iodides/chemistry , Molecular Structure , Nitrates/chemistry , Phosphoric Acids/chemistry , Sulfates/chemistry
20.
Talanta ; 85(5): 2470-8, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21962670

ABSTRACT

A series of novel (oligo)thienyl-imidazo-benzocrown ethers were synthesised through a simple method and evaluated as fluorimetric chemosensors for transition metal cations. Interaction with Ni(2+), Pd(2+), and Hg(2+) in ACN/DMSO solution (99:1) was studied by absorption and emission spectroscopy. Chemoselectivity studies in the presence of Na(+) were also carried out and a fluorescence enhancement upon chelation (CHEF) effect was observed following Hg(2+) complexation. Considering that most systems using fluorescence spectroscopy for detecting Hg(2+) are based on the complexation enhancement of the fluorescence quenching (CHEQ) effect, the present work represents one of the few examples for sensing of Hg(2+) based on a CHEF effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...