Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Microsc Microanal ; 29(2): 616-634, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37749742

ABSTRACT

This article outlines a global study conducted by the Association of Biomedical Resource Facilities (ABRF) Light Microscopy Research Group (LMRG). The results present a novel 3D tissue-like biologically relevant standard sample that is affordable and straightforward to prepare. Detailed sample preparation, instrument-specific image acquisition protocols and image analysis methods are presented and made available to the community. The standard consists of sub-resolution and large well characterized relative intensity fluorescence microspheres embedded in a 120 µm thick 3D gel with a refractive index of 1.365. The standard allows the evaluation of several properties as a function of depth. These include the following: 1) microscope resolution with automated analysis of the point-spread function (PSF), 2) automated signal-to-noise ratio analysis, 3) calibration and correction of fluorescence intensity loss, and 4) quantitative relative intensity. Results demonstrate expected refractive index mismatch dependent losses in intensity and resolution with depth, but the relative intensities of different objects at similar depths are maintained. This is a robust standard showing reproducible results across laboratories, microscope manufacturers and objective lens types (e.g., magnification, immersion medium). Thus, these tools will be valuable for the global community to benchmark fluorescence microscopes and will contribute to improved scientific rigor and reproducibility.


Subject(s)
Image Processing, Computer-Assisted , Reproducibility of Results , Microscopy, Fluorescence/methods
2.
J Microsc ; 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36382994

ABSTRACT

Core facilities are research laboratories staffed by professional scientists who can provide access, training, support, and maintenance for the utilisation of highly specialised instrumentation. Microscopy core facilities support researchers working in many areas with wide ranging imaging needs. The companies that manufacture, sell, and service advanced microscopy instrumentation often develop strong and mutually beneficial relationships with their customers, which sometimes lead to contractual agreements with academic research institutions, resulting in so-called 'branded' core facilities. These academic-industrial partnerships can have significant benefits for both parties and ultimately can serve to improve the scientific resources available to the core facility user base. The article will describe these types of arrangements and specifically highlight aspects of these agreements that can benefit each partner in addition to some specific challenges that can arise with 'branded' core facilities.

3.
J Biomol Tech ; 32(1): 1-9, 2021 04.
Article in English | MEDLINE | ID: mdl-33880077

ABSTRACT

Core facilities (CFs) provide a centralised access to costly equipment, scientific expertise, experimental design, day-to-day technical support and training of users. CFs have a tremendous impact on research outputs, skills and educational agendas, increasing the competencies of staff, researchers and students. However, the rapid development of new technologies and methodologies for the life sciences requires fast adaptation and development of existing core facilities and their technical and scientific staff. Given the scarcity of well-defined CF career paths, CF staff positions are typically filled by people having followed either academic or technical tracks. Each academic institution follows different policies and often fails to adequately recognize the merits of CF personnel and to support their training efficiently. Thus, the Core Technologies for Life Science association (CTLS), through the Training working group, has conducted an anonymous online survey to assess the training needs of CF personnel, as well as to identify common characteristics and challenges in this relatively new and dynamic career type. 275 individuals, including core managers and directors, technicians, technologists and administrators, participated in the survey. The survey was divided into 2 sections; the first, applied to all respondents, and the second, specifically targeted core management issues. Training needs in technological areas, financial and soft skills, management and administrative issues were surveyed as well. The lack of clarity and consistency regarding established career paths for CF professionals was evident from the second part of the survey, highlighting geographical or cultural differences. Gender balance was achieved and the distribution was always taken into account. The results of this survey highlight a need to develop better training resources for CF staff, to improve their recognition within academic institutions, and to establish a recognized career pathway.


Subject(s)
Curriculum , Universities , Humans , Surveys and Questionnaires
4.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429876

ABSTRACT

Iron is typically the dominant metal in the ultrafine fraction of airborne particulate matter. Various studies have investigated the toxicity of inhaled nano-sized iron oxide particles (FeOxNPs) but their results have been contradictory, with some indicating no or minor effects and others finding effects including oxidative stress and inflammation. Most studies, however, did not use materials reflecting the characteristics of FeOxNPs present in the environment. We, therefore, analysed the potential toxicity of FeOxNPs of different forms (Fe3O4, α-Fe2O3 and γ-Fe2O3) reflecting the characteristics of high iron content nano-sized particles sampled from the environment, both individually and in a mixture (FeOx-mix). A preliminary in vitro study indicated Fe3O4 and FeOx-mix were more cytotoxic than either form of Fe2O3 in human bronchial epithelial cells (BEAS-2B). Follow-up in vitro (0.003, 0.03, 0.3 µg/mL, 24 h) and in vivo (Sprague-Dawley rats, nose-only exposure, 50 µg/m3 and 500 µg/m3, 3 h/d × 3 d) studies therefore focused on these materials. Experiments in vitro explored responses at the molecular level via multi-omics analyses at concentrations below those at which significant cytotoxicity was evident to avoid detection of responses secondary to toxicity. Inhalation experiments used aerosol concentrations chosen to produce similar levels of particle deposition on the airway surface as were delivered in vitro. These were markedly higher than environmental concentrations. No clinical signs of toxicity were seen nor effects on BALF cell counts or LDH levels. There were also no significant changes in transcriptomic or metabolomic responses in lung or BEAS-2B cells to suggest adverse effects.


Subject(s)
Acute Lung Injury/physiopathology , Inflammation/physiopathology , Lung/drug effects , Magnetic Iron Oxide Nanoparticles/toxicity , Acute Lung Injury/chemically induced , Aerosols/chemistry , Aerosols/toxicity , Air Pollutants/toxicity , Animals , Cell Line , Humans , Inflammation/chemically induced , Inhalation Exposure , Lung/pathology , Particulate Matter/toxicity , Rats , Rats, Sprague-Dawley
5.
J Biomol Tech ; 32(4)2021 12 15.
Article in English | MEDLINE | ID: mdl-35837270

ABSTRACT

Shared research resources, also known as core facilities, serve a crucial role in supporting research, training, and other needs for their respective institutions. In response to the coronavirus disease (COVID-19) pandemic, all but the most critical laboratory research was halted in many institutions around the world. The Association of Biomolecular Resource Facilities conducted 2 surveys to understand and document institutional responses to the COVID-19 pandemic from core facility perspectives. The first survey was focused on initial pandemic response and efforts to sustainably ramp down core facility operations. The second survey, which is the subject of this study, focused on understanding the approaches taken to ramp up core facility operations after these ramp-down procedures. The survey results revealed that many cores remained active during the ramp-down, performing essential COVID-19 research, and had a more coordinated institutional response for ramping up research as a whole. The lessons gained from this survey will be indexed to serve as a resource for the core facility community to understand, plan, and mitigate risk and disruptions in the event of future disasters.


Subject(s)
COVID-19 , Disasters , COVID-19/epidemiology , Humans , Pandemics , Surveys and Questionnaires
6.
J Biomol Tech ; 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33304201

ABSTRACT

Core facilities (CFs) provide a centralised access to costly equipment, scientific expertise, experimental design, day-to-day technical support and training of users. CFs have a tremendous impact on research outputs, skills and educational agendas, increasing the competencies of staff, researchers and students. However, the rapid development of new technologies and methodologies for the life sciences requires fast adaptation and development of existing core facilities and their technical and scientific staff. Given the scarcity of well-defined CF career paths, CF staff positions are typically filled by people having followed either academic or technical tracks. Each academic institution follows different policies and often fails to adequately recognize the merits of CF personnel and to support their training efficiently. Thus, the Core Technologies for Life Science association (CTLS), through the Training working group, has conducted an anonymous online survey to assess the training needs of CF personnel, as well as to identify common characteristics and challenges in this relatively new and dynamic career type. 275 individuals, including core managers and directors, technicians, technologists and administrators, participated in the survey. The survey was divided into 2 sections; the first, applied to all respondents, and the second, specifically targeted core management issues. Training needs in technological areas, financial and soft skills, management and administrative issues were surveyed as well. The lack of clarity and consistency regarding established career paths for CF professionals was evident from the second part of the survey, highlighting geographical or cultural differences. Gender balance was achieved and the distribution was always taken into account. The results of this survey highlight a need to develop better training resources for CF staff, to improve their recognition within academic institutions, and to establish a recognized career pathway.

7.
J Biomol Tech ; 31(4): 119-124, 2020 12.
Article in English | MEDLINE | ID: mdl-32999636

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has curtailed all but the most critical laboratory research in many institutions around the world. These unplanned and unprecedented operational changes have put considerable stress on every aspect of the research enterprise, from funding agencies to research institutes, individual and core laboratories, researchers, and research administrators, with drastic changes in demands and deliverables. The Association of Biomolecular Resource Facilities Core Administrators Network Coordinating Committee initiated a forum-wide discussion followed by a global survey to gain information on how institutions and, specifically, shared resource core facilities were responding to the COVID-19 pandemic. The survey aimed to identify shared resource core facility challenges and opportunities related to operational ramp downs, shutdowns, or research "pauses" during the COVID-19 pandemic, as well as new practices and resources needed to ensure business continuity. Although a number of positive outcomes from remote work hold promise for improved core operations, the survey results revealed a surprising level of unfamiliarity with business continuity planning for cores and limited coordination within institutions. Recommendations for business continuity planning include key stakeholders working together to assess risk, prioritize work, and promote transparency across campus.


Subject(s)
Biomedical Research/organization & administration , COVID-19/epidemiology , Molecular Biology/organization & administration , Pandemics , Academies and Institutes/organization & administration , Disaster Planning/organization & administration , Humans , Laboratories/organization & administration , Research Personnel , SARS-CoV-2 , Surveys and Questionnaires , Teleworking
8.
Nanomaterials (Basel) ; 10(3)2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32106393

ABSTRACT

Nanomaterial (NM) surface chemistry has an established and significant effect on interactions at the nano-bio interface, with important toxicological consequences for manufactured NMs, as well as potent effects on the pharmacokinetics and efficacy of nano-therapies. In this work, the effects of different surface modifications (PVP, Dispex AA4040, and Pluronic F127) on the uptake, cellular distribution, and degradation of titanium dioxide NMs (TiO2 NMs, ~10 nm core size) are assessed and correlated with the localization of fluorescently-labeled serum proteins forming their coronas. Imaging approaches with an increasing spatial resolution, including automated high throughput live cell imaging, correlative confocal fluorescence and reflectance microscopy, and dSTORM super-resolution microscopy, are used to explore the cellular fate of these NMs and their associated serum proteins. Uncoated TiO2 NMs demonstrate a rapid loss of corona proteins, while surface coating results in the retention of the corona signal after internalization for at least 24 h (varying with coating composition). Imaging with two-color super-resolution dSTORM revealed that the apparent TiO2 NM single agglomerates observed in diffraction-limited confocal microscopy are actually adjacent smaller agglomerates, and provides novel insights into the spatial arrangement of the initial and exchanged coronas adsorbed at the NM surfaces.

9.
Nanotoxicology ; 14(4): 504-532, 2020 05.
Article in English | MEDLINE | ID: mdl-32037933

ABSTRACT

Engineered Nanomaterials (NMs), such as Superparamagnetic Iron Oxide Nanoparticles (SPIONs), offer significant benefits in a wide range of applications, including cancer diagnostic and therapeutic strategies. However, the use of NMs in biomedicine raises safety concerns due to lack of knowledge on possible biological interactions and effects. The initial basis for using SPIONs as biomedical MRI contrast enhancement agents was the idea that they are selectively taken up by macrophage cells, and not by the surrounding cancer cells. To investigate this claim, we analyzed the uptake of SPIONs into well-established cancer cell models and benchmarked this against a common macrophage cell model. In combination with fluorescent labeling of compartments and siRNA silencing of various proteins involved in common endocytic pathways, the mechanisms of internalization of SPIONs in these cell types has been ascertained utilizing reflectance confocal microscopy. Caveolar mediated endocytosis and macropinocytosis are both implicated in SPION uptake into cancer cells, whereas in macrophage cells, a clathrin-dependant route appears to predominate. Colocalization studies confirmed the eventual fate of SPIONs as accumulation in the degradative lysosomes. Dissolution of the SPIONs within the lysosomal environment has also been determined, allowing a fuller understanding of the cellular interactions, uptake, trafficking and effects of SPIONs within a variety of cancer cells and macrophages. Overall, the behavior of SPIONS in non-phagocytotic cell lines is broadly similar to that in the specialist macrophage cells, although some differences in the uptake patterns are apparent.


Subject(s)
Contrast Media/metabolism , Endocytosis , Macrophages/metabolism , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Animals , Biological Transport , Cell Line, Tumor , Contrast Media/chemistry , Contrast Media/toxicity , Humans , Image Processing, Computer-Assisted , Lysosomes/metabolism , Macrophages/drug effects , Magnetite Nanoparticles/toxicity , Microscopy, Confocal , Microscopy, Electron, Scanning , Particle Size , Surface Properties , rab GTP-Binding Proteins/metabolism
10.
FEBS J ; 287(16): 3526-3550, 2020 08.
Article in English | MEDLINE | ID: mdl-31985874

ABSTRACT

RING finger protein 11 (RNF11) is an evolutionary conserved Really Interesting New Gene E3 ligase that is overexpressed in several human tumours. Although several reports have highlighted its involvement in crucial cellular processes, the mechanistic details underlying its function are still poorly understood. Utilizing stable isotope labelling by amino acids in culture (SILAC)-based proteomics analysis, we identified 51 proteins that co-immunoprecipitate with wild-type RNF11 and/or with its catalytically inactive mutant. We focused our attention on the interaction of RNF11 with Ankyrin repeat domain-containing protein 13 (ANKRD13)s family. Members of the ANKRD13 family contain ubiquitin-interacting motifs (UIM) that recognize the Lys-63-linked ubiquitin (Ub) chains appended to Epidermal growth factor receptor (EGFR) soon after ligand binding. We show that ANKRD13A, ANKRD13B and ANKRD13D form a complex with RNF11 in vivo and that the UIMs are required for complex formation. However, at odds with the conventional UIM binding mode, Ub modification of RNF11 is not required for the interaction with ANKRD13 proteins. We also show that the interaction between ANKRD13A and RNF11 is modulated by the EGF stimulus and that a complex formed by ANKRD13A, RNF11 and activated EGFR is transiently assembled in the early phases of receptor endocytosis. Moreover, loss of function of the E3 ligases Itchy E3 ubiquitin-protein ligase (ITCH) or RNF11, respectively, abrogates or increases the ubiquitination of endogenous ANKRD13A, affecting its ability to bind activated EGFR. We propose a model whereby the ANKRD13 proteins act as molecular scaffolds that promote the transient formation of a complex between the activated EGFR and the E3 ligases ITCH and RNF11. By regulating the ubiquitination status of ANKRD13A and consequently its endocytic adaptor function, RNF11 promotes sorting of the activated EGFR for lysosomal degradation.


Subject(s)
DNA-Binding Proteins/metabolism , ErbB Receptors/metabolism , Membrane Proteins/metabolism , Ubiquitin/metabolism , Binding Sites , DNA-Binding Proteins/genetics , Endosomes/metabolism , ErbB Receptors/genetics , HEK293 Cells , HeLa Cells , Humans , Ligands , Membrane Proteins/genetics , Microscopy, Confocal , Microscopy, Fluorescence , Protein Binding , Proteomics/methods
11.
Mol Psychiatry ; 25(9): 2000-2016, 2020 09.
Article in English | MEDLINE | ID: mdl-30967682

ABSTRACT

Postsynaptic trafficking plays a key role in regulating synapse structure and function. While spiny excitatory synapses can be stable throughout adult life, their morphology and function is impaired in Alzheimer's disease (AD). However, little is known about how AD risk genes impact synaptic function. Here we used structured superresolution illumination microscopy (SIM) to study the late-onset Alzheimer's disease (LOAD) risk factor BIN1, and show that this protein is abundant in postsynaptic compartments, including spines. While postsynaptic Bin1 shows colocalization with clathrin, a major endocytic protein, it also colocalizes with the small GTPases Rab11 and Arf6, components of the exocytic pathway. Bin1 participates in protein complexes with Arf6 and GluA1, and manipulations of Bin1 lead to changes in spine morphology, AMPA receptor surface expression and trafficking, and AMPA receptor-mediated synaptic transmission. Our data provide new insights into the mesoscale architecture of postsynaptic trafficking compartments and their regulation by a major LOAD risk factor.


Subject(s)
Alzheimer Disease , Adaptor Proteins, Signal Transducing/genetics , Adult , Humans , Nuclear Proteins , Receptors, AMPA/metabolism , Synapses/metabolism , Synaptic Transmission , Tumor Suppressor Proteins
12.
Nanotoxicology ; 13(6): 733-750, 2019 08.
Article in English | MEDLINE | ID: mdl-30704321

ABSTRACT

Cerium oxide nanoparticles (CeO2NPs), used in some diesel fuel additives to improve fuel combustion efficiency and exhaust filter operation, have been detected in ambient air and concerns have been raised about their potential human health impact. The majority of CeO2NP inhalation studies undertaken to date have used aerosol particles of larger sizes than the evidence suggests are emitted from vehicles using such fuel additives. Hence, the objective of this study was to investigate the effects of inhaled CeO2NP aerosols of a more environmentally relevant size, utilizing a combination of methods, including untargeted multi-omics to enable the broadest possible survey of molecular responses and synchrotron X-ray spectroscopy to investigate cerium speciation. Male Sprague-Dawley rats were exposed by nose-only inhalation to aerosolized CeO2NPs (mass concentration 1.8 mg/m3, aerosol count median diameter 40 nm) for 3 h/d for 4 d/week, for 1 or 2 weeks and sacrificed at 3 and 7 d post-exposure. Markers of inflammation changed significantly in a dose- and time-dependent manner, which, combined with results from lung histopathology and gene expression analyses suggest an inflammatory response greater than that seen in studies using micron-sized ceria aerosols. Lipidomics of lung tissue revealed changes to minor lipid species, implying specific rather than general cellular effects. Cerium speciation analysis indicated a change in Ce3+/Ce4+ ratio within lung tissue. Collectively, these results in conjunction with earlier studies emphasize the importance of aerosol particle size on toxicity determination. Furthermore, the limited effect resolution within 7 d suggested the possibility of longer-term effects.


Subject(s)
Cerium/toxicity , Inhalation Exposure/adverse effects , Lung/drug effects , Nanoparticles/toxicity , Pneumonia/chemically induced , Vehicle Emissions/toxicity , Aerosols , Animals , Cerium/metabolism , Humans , Inflammation , Lung/metabolism , Lung/pathology , Male , Nanoparticles/metabolism , Particle Size , Pneumonia/immunology , Rats , Rats, Sprague-Dawley
13.
Biotechniques ; 64(5): 194-196, 2018 05.
Article in English | MEDLINE | ID: mdl-29793359

ABSTRACT

Dr Joshua Z Rappoport, PhD, speaks to Nawsheen Boodhun, Managing Editor. Rappoport completed his bachelor's degree in Biology at Brown University (RI, USA). He then went on to earn a PhD from the Program in Mechanisms of Disease and Therapeutics at the Mount Sinai School of Medicine Graduate School of Biological Sciences of New York University (USA). Rappoport spent the early parts of his career working as a postdoctoral researcher at the Laboratory of Cellular Biophysics based in The Rockefeller University (NY, USA). He was subsequently recruited as a tenured faculty member to work as part of the School of Biosciences at the University of Birmingham (UK). 2014 marked the return of Rappoport to the USA, where he is currently a Research Professor in Molecular Cell Biology at the Northwestern University Feinberg School of Medicine (IL, USA). He is also the Director of the Center for Advanced Microscopy (CAM) and Nikon Imaging Center (NIC), a large core facility consisting of eight members of staff that support around 200 different laboratories.


Subject(s)
Cell Biology , Molecular Biology , Microscopy/methods , Receptors, Cell Surface , Signal Transduction
14.
Invest Ophthalmol Vis Sci ; 59(1): 393-406, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29351356

ABSTRACT

Purpose: Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal-corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium. This reciprocal pattern led us to assess the role of ephrin-A1 and EphA2 in limbal-corneal epithelial boundary organization. Methods: EphA2-expressing corneal epithelial cells engineered to express ephrin-A1 were used to study boundary formation in vitro in a manner that mimicked the relative abundance of these juxtamembrane signaling proteins in the limbal and corneal epithelium in vivo. Interaction of these two distinct cell populations following initial seeding into discrete culture compartments was assessed by live cell imaging. Immunofluoresence and immunoblotting was used to evaluate the contribution of downstream growth factor signaling and cell-cell adhesion systems to boundary formation at sites of heterotypic contact between ephrin-A1 and EphA2 expressing cells. Results: Ephrin-A1-expressing cells impeded and reversed the migration of EphA2-expressing corneal epithelial cells upon heterotypic contact formation leading to coordinated migration of the two cell populations in the direction of an ephrin-A1-expressing leading front. Genetic silencing and pharmacologic inhibitor studies demonstrated that the ability of ephrin-A1 to direct migration of EphA2-expressing cells depended on an a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and epidermal growth factor receptor (EGFR) signaling pathway that limited E-cadherin-mediated adhesion at heterotypic boundaries. Conclusions: Ephrin-A1/EphA2 signaling complexes play a key role in limbal-corneal epithelial compartmentalization and the response of these tissues to injury.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Cell Compartmentation/physiology , Ephrin-A1/physiology , Ephrin-A2/physiology , Epithelium, Corneal/cytology , ErbB Receptors/metabolism , Membrane Proteins/metabolism , Signal Transduction/physiology , Animals , Blotting, Western , Cell Communication/physiology , Cells, Cultured , Epithelium, Corneal/metabolism , Gene Expression/physiology , Gene Silencing/physiology , Humans , Immunohistochemistry , Limbus Corneae/cytology , Limbus Corneae/metabolism , Mice , Mice, Inbred BALB C , Receptor, EphA2/physiology , Stem Cells/cytology
15.
Methods ; 115: 42-54, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28131869

ABSTRACT

Confocal microscopy is a powerful tool for the study of cellular receptor trafficking and endocytosis. Unbiased and robust image analysis workflows are required for the identification, and study, of aberrant trafficking. After a brief review of related strategies, identifying both good and bad practice, custom workflows for the analysis of live cell 3D time-lapse data are presented. Strategies for data pre-processing, including denoising and background subtraction are considered. We use a 3D level set protocol to accurately segment cells using only the signal from fluorescently labelled receptor. A protocol for the quantification of changes to subcellular receptor distribution over time is then presented. As an example, ligand stimulated trafficking of epidermal growth factor receptor (EGFR) is shown to be significantly reduced in both AG1478 and Dynasore treated cells. Protocols for the quantitative analysis of colocalization between receptor and endosomes are also introduced, including strategies for signal isolation and statistical testing. By calculating the Manders and Pearson coefficients, both co-occurrence and correlation can be assessed. A statistically significant decrease in the level of ligand induced co-occurrence between EGFR and rab5 positive endosomes is demonstrated for both the AG1478 and Dynasore treated cells relative to a control. Finally, a strategy for the visualisation of co-occurrence is presented, which provides an unbiased alternative to colour overlays.


Subject(s)
ErbB Receptors/metabolism , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Recombinant Fusion Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Epidermal Growth Factor/pharmacology , ErbB Receptors/genetics , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Hydrazones/pharmacology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Protein Transport/drug effects , Quinazolines/pharmacology , Recombinant Fusion Proteins/genetics , Transformation, Genetic , Tyrphostins/pharmacology , rab5 GTP-Binding Proteins/genetics , Red Fluorescent Protein
16.
Int J Biochem Cell Biol ; 83: 65-70, 2017 02.
Article in English | MEDLINE | ID: mdl-28013148

ABSTRACT

Reflectance imaging is a broad term that describes the formation of images by the detection of illumination light that is back-scattered from reflective features within a sample. Reflectance imaging can be performed in a variety of different configurations, such as confocal, oblique angle illumination, structured illumination, interferometry and total internal reflectance, permitting a plethora of biomedical applications. Reflectance imaging has proven indispensable for critical investigations into the safety and understanding of biomedically and environmentally relevant nano-materials, an area of high priority and investment. The non-destructive in vivo imaging ability of reflectance techniques permits alternative diagnostic strategies that may eventually facilitate the eradication of some invasive biopsy procedures. Reflectance can also provide additional structural information and clarity necessary in fluorescent based in vivo studies. Near-coverslip interrogation techniques, such as reflectance interferometry and total internal reflection, have provided a label free means to investigate cell-surface contacts, cell motility and vesicle trafficking in vivo and in vitro. Other key advances include the ability to acquire superresolution reflectance images providing increased spatial resolution.


Subject(s)
Microscopy, Confocal/methods , Microscopy, Interference/methods , Animals , Diagnostic Imaging/methods , Humans , Light , Lighting/methods , Tomography, Optical Coherence/methods
17.
J Cell Biol ; 215(5): 667-685, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27872138

ABSTRACT

Macropinocytosis, by which cells ingest large amounts of fluid, and autophagy, the lysosome-based catabolic process, involve vesicular biogenesis (early stage) and turnover (end stage). Much is known about early-stage events; however, our understanding of how the end stages of these processes are governed is incomplete. Here we demonstrate that the microRNA-103/107(miR-103/107) family, which is preferentially expressed in the stem cell-enriched limbal epithelium, coordinately regulates aspects of both these activities. Loss of miR-103/107 causes dysregulation of macropinocytosis with the formation of large vacuoles, primarily through up-regulation of Src, Ras, and Ankfy1. Vacuole accumulation is not a malfunction of early-stage autophagy; rather, miR-103/107 ensure proper end-stage autophagy by regulating diacylglycerol/protein kinase C and cyclin-dependent kinase 5 signaling, which enables dynamin to function in vacuole clearance. Our findings unveil a key biological function for miR-103/107 in coordinately suppressing macropinocytosis and preserving end-stage autophagy, thereby contributing to maintenance of a stem cell-enriched epithelium.


Subject(s)
Autophagy , MicroRNAs/metabolism , Pinocytosis , Animals , Biomarkers/metabolism , Cell Proliferation , Diglycerides/metabolism , Dynamins/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Keratinocytes/ultrastructure , Lysosomes/metabolism , Membrane Proteins , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Phosphate-Binding Proteins , Src Homology 2 Domain-Containing, Transforming Protein 3/metabolism , Vacuoles/metabolism , Vacuoles/ultrastructure , rab GTP-Binding Proteins/metabolism
18.
PLoS One ; 11(10): e0159980, 2016.
Article in English | MEDLINE | ID: mdl-27695038

ABSTRACT

The potential for human exposure to manufactured nanoparticles (NPs) has increased in recent years, in part through the incorporation of engineered particles into a wide range of commercial goods and medical applications. NP are ideal candidates for use as therapeutic and diagnostic tools within biomedicine, however concern exists regarding their efficacy and safety. Thus, developing techniques for the investigation of NP uptake into cells is critically important. Current intracellular NP investigations rely on the use of either Transmission Electron Microscopy (TEM), which provides ultrahigh resolution, but involves cumbersome sample preparation rendering the technique incompatible with live cell imaging, or fluorescent labelling, which suffers from photobleaching, poor bioconjugation and, often, alteration of NP surface properties. Reflected light imaging provides an alternative non-destructive label free technique well suited, but not limited to, the visualisation of NP uptake within model systems, such as cells. Confocal reflectance microscopy provides optical sectioning and live imaging capabilities, with little sample preparation. However confocal microscopy is diffraction limited, thus the X-Y resolution is restricted to ~250 nm, substantially larger than the <100 nm size of NPs. Techniques such as super-resolution light microscopy overcome this fundamental limitation, providing increased X-Y resolution. The use of Reflectance SIM (R-SIM) for NP imaging has previously only been demonstrated on custom built microscopes, restricting the widespread use and limiting NP investigations. This paper demonstrates the use of a commercial SIM microscope for the acquisition of super-resolution reflectance data with X-Y resolution of 115 nm, a greater than two-fold increase compared to that attainable with RCM. This increase in resolution is advantageous for visualising small closely spaced structures, such as NP clusters, previously unresolvable by RCM. This is advantageous when investigating the subcellular trafficking of NP within fluorescently labelled cellular compartments. NP signal can be observed using RCM, R-SIM and TEM and a direct comparison is presented. Each of these techniques has its own benefits and limitations; RCM and R-SIM provide novel complementary information while the combination of modalities provides a unique opportunity to gain additional information regarding NP uptake. The use of multiple imaging methods therefore greatly enhances the range of NPs that can be studied under label-free conditions.


Subject(s)
Image Processing, Computer-Assisted , Metal Nanoparticles/ultrastructure , Microscopy, Confocal , Image Processing, Computer-Assisted/methods , Microscopy, Confocal/methods , Microscopy, Electron, Transmission
20.
Biol Bull ; 231(1): 40-60, 2016 08.
Article in English | MEDLINE | ID: mdl-27638694

ABSTRACT

Particles present in diesel exhaust have been proposed as a significant contributor to the development of acute and chronic lung diseases, including respiratory infection and allergic asthma. Nanoceria (CeO2 nanoparticles) are used to increase fuel efficiency in internal combustion engines, are present in exhaust fumes, and could affect cells of the airway. Components from the environment such as biologically derived proteins, carbohydrates, and lipids can form a dynamic layer, commonly referred to as the "protein corona" which alters cellular nanoparticle interactions and internalization. Using confocal reflectance microscopy, we quantified nanoceria uptake by lung-derived cells in the presence and absence of a serum-derived protein corona. Employing mass spectrometry, we identified components of the protein corona, and demonstrated that the interaction between transferrin in the protein corona and the transferrin receptor is involved in mediating the cellular entry of nanoceria via clathrin-mediated endocytosis. Furthermore, under these conditions nanoceria does not affect cell growth, viability, or metabolism, even at high concentration. Alternatively, despite the antioxidant capacity of nanoceria, in serum-free conditions these nanoparticles induce plasma membrane disruption and cause changes in cellular metabolism. Thus, our results identify a specific receptor-mediated mechanism for nanoceria entry, and provide significant insight into the potential for nanoparticle-dependent toxicity.


Subject(s)
Cerium/toxicity , Clathrin/metabolism , Endocytosis , Metal Nanoparticles/toxicity , Protein Corona/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cerium/metabolism , Culture Media, Serum-Free , Humans , Protein Corona/chemistry , Receptors, Transferrin/metabolism , Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...