Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 37(9): 1764-76, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26353125

ABSTRACT

The goal of cross-domain matching (CDM) is to find correspondences between two sets of objects in different domains in an unsupervised way. CDM has various interesting applications, including photo album summarization where photos are automatically aligned into a designed frame expressed in the Cartesian coordinate system, and temporal alignment which aligns sequences such as videos that are potentially expressed using different features. In this paper, we propose an information-theoretic CDM framework based on squared-loss mutual information (SMI). The proposed approach can directly handle non-linearly related objects/sequences with different dimensions, with the ability that hyper-parameters can be objectively optimized by cross-validation. We apply the proposed method to several real-world problems including image matching, unpaired voice conversion, photo album summarization, cross-feature video and cross-domain video-to-mocap alignment, and Kinect-based action recognition, and experimentally demonstrate that the proposed method is a promising alternative to state-of-the-art CDM methods.

2.
IEEE Trans Pattern Anal Mach Intell ; 36(2): 235-47, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24356346

ABSTRACT

Discriminative, or (structured) prediction, methods have proved effective for variety of problems in computer vision; a notable example is 3D monocular pose estimation. All methods to date, however, relied on an assumption that training (source) and test (target) data come from the same underlying joint distribution. In many real cases, including standard data sets, this assumption is flawed. In the presence of training set bias, the learning results in a biased model whose performance degrades on the (target) test set. Under the assumption of covariate shift, we propose an unsupervised domain adaptation approach to address this problem. The approach takes the form of training instance reweighting, where the weights are assigned based on the ratio of training and test marginals evaluated at the samples. Learning with the resulting weighted training samples alleviates the bias in the learned models. We show the efficacy of our approach by proposing weighted variants of kernel regression (KR) and twin Gaussian processes (TGP). We show that our weighted variants outperform their unweighted counterparts and improve on the state-of-the-art performance in the public (HumanEva) data set.


Subject(s)
Algorithms , Artificial Intelligence , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Computer Simulation , Discriminant Analysis , Image Enhancement/methods , Models, Statistical , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...