Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 534: 420-429, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30245339

ABSTRACT

An unusual dot pattern was realized via self-assembly of high molecular weight polystyrene-block-polydimethylsiloxane (PS-b-PDMS) copolymer by a simple one-step solvent annealing process, optimized based on Hansen solubility parameters. Annealing PS-b-PDMS under neutral solvent vapors at room temperature produces an ordered arrangement of dots with ∼112 nm spacing and ∼54 nm diameter. The template is highly resistant to dry etching with chlorine-based plasma, enabling its utilization on a variety of hard masks and substrates. The self-assembled PDMS dots were further exploited as a template for direct patterning of silicon, metal, and dielectric materials. This nanopatterning methodology circumvents expensive and time-consuming atomic layer deposition, wet processes, and sequential infiltration techniques. Application-wise, we show a process to fabricate nanostructured antireflection surfaces (nanocones) on a 2 in. silicon wafer, reducing the reflectance of planar silicon from 35% to below 0.5% over a broad wavelength range. Alternatively, nanocones made of TiO2 on silicon exhibit low reflectance (<3%) and improved transmittance into the substrate at the visible wavelength range. The measured optical properties concur with the simulation results. The versatility of the PS-b-PDMS templates was further utilized for nanopatterning materials such as silicon-on-insulator substrates, gallium arsenide, aluminum indium phosphide, and gallium nitride, which are important in electronics and photonics.

2.
Nanoscale ; 10(38): 18306-18314, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30246842

ABSTRACT

In this paper, we report on the fabrication of optical nanoresonators using block copolymer lithography. The nanostructured gratings or nanofins were fabricated using a silicon-containing block copolymer on a chromium coated silicon-on-insulator substrate. The etch resistance of the block copolymer template enables a unique patterning technique for high-aspect-ratio silicon nanofins. Integration of the directed self-assembly with nanoimprint lithography provides a well-aligned array of nanofins with a depth of ∼125 nm on a wafer scale. The developed nanopatterning method is an alternative to the previously reported nanopatterning techniques utilizing block copolymers. A dense array of sub-10 nm nanofins is used to realize a photonic guided-mode resonance filter. The nanostructured grating provides high sensitivity in refractive index sensing, as demonstrated by simulations and experiments in measuring varying contents of the tetrahydrofuran solvent.

3.
Nanomaterials (Basel) ; 8(1)2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29315245

ABSTRACT

The self-assembly of a lamellar-forming polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer (DBCP) was studied herein for surface nanopatterning. The DBCP was synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane (D3). The number average molecular weight (Mn), polydispersity index (Mw/Mn) and PS volume fraction (φps) of the DBCP were MnPS = 23.0 kg mol-1, MnPDMS = 15.0 kg mol-1, Mw/Mn = 1.06 and φps = 0.6. Thin films of the DBCP were cast and solvent annealed on topographically patterned polyhedral oligomeric silsesquioxane (POSS) substrates. The lamellae repeat distance or pitch (λL) and the width of the PDMS features (dL) are ~35 nm and ~17 nm, respectively, as determined by SEM. The chemistry of the POSS substrates was tuned, and the effects on the self-assembly of the DBCP noted. The PDMS nanopatterns were used as etching mask in order to transfer the DBCP pattern to underlying silicon substrate by a complex plasma etch process yielding sub-15 nm silicon features.

4.
ACS Omega ; 2(8): 4417-4423, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-31457733

ABSTRACT

Achieving ultrasmall dimensions of materials and retaining high throughput are critical fabrication considerations for nanotechnology use. This article demonstrates an integrated approach for developing isolated sub-20 nm silicon oxide features through combined "top-down" and "bottom-up" methods: nanoimprint lithography (NIL) and block copolymer (BCP) lithography. Although techniques like those demonstrated here have been developed for nanolithographic application in the microelectronics processing industry, similar approaches could be utilized for sensor, fluidic, and optical-based devices. Thus, this article centers on looking at the possibility of generating isolated silica structures on substrates. NIL was used to create intriguing three-dimensional (3-D) polyhedral oligomeric silsesquioxane (POSS) topographical arrays that guided and confined polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) BCP nanofeatures in isolated regions. A cylinder forming PS-b-PDMS BCP system was successfully etched using a one-step etching process to create line-space arrays with a period of 35 nm in confined POSS arrays. We highlight large-area (>6 µm) coverage of line-space arrays in 3-D topographies that could potentially be utilized, for example, in nanofluidic systems. Aligned features for directed self-assembly application are also demonstrated. The high-density, confined silicon oxide nanofeatures in soft lithographic templates over macroscopic areas illustrate the advantages of integrating distinct lithographic methods for attaining discrete features in the deep nanoscale regime.

5.
Nanotechnology ; 28(4): 044001, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-27981945

ABSTRACT

Poly(styrene)-block-poly(dimethylsiloxane) (PS-b-PDMS) is an excellent block copolymer (BCP) system for self-assembly and inorganic template fabrication because of its high Flory-Huggins parameter (χ âˆ¼ 0.26) at room temperature in comparison to other BCPs, and high selective etch contrast between PS and PDMS block for nanopatterning. In this work, self-assembly in PS-b-PDMS BCP is achieved by combining hydroxyl-terminated poly(dimethylsiloxane) (PDMS-OH) brush surfaces with solvent vapor annealing. As an alternative to standard brush chemistry, we report a simple method based on the use of surfaces functionalized with silane-based self-assembled monolayers (SAMs). A solution-based approach to SAM formation was adopted in this investigation. The influence of the SAM-modified surfaces upon BCP films was compared with polymer brush-based surfaces. The cylinder forming PS-b-PDMS BCP and PDMS-OH polymer brush were synthesized by sequential living anionic polymerization. It was observed that silane SAMs provided the appropriate surface chemistry which, when combined with solvent annealing, led to microphase segregation in the BCP. It was also demonstrated that orientation of the PDMS cylinders may be controlled by judicious choice of the appropriate silane. The PDMS patterns were successfully used as an on-chip etch mask to transfer the BCP pattern to underlying silicon substrate with sub-25 nm silicon nanoscale features. This alternative SAM/BCP approach to nanopattern formation shows promising results, pertinent in the field of nanotechnology, and with much potential for application, such as in the fabrication of nanoimprint lithography stamps, nanofluidic devices or in narrow and multilevel interconnected lines.

6.
Sci Rep ; 5: 13270, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26290188

ABSTRACT

Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H2O2) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an 'insitu' BCP inclusion methodology using poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-b-PEO systems was studied. The dual detection of EtOH and H2O2 was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance.

7.
Langmuir ; 30(35): 10728-39, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25137566

ABSTRACT

Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high-χ lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 °C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.

8.
J Nanosci Nanotechnol ; 14(7): 5221-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24758007

ABSTRACT

The need for materials for high energy storage has led to very significant research in supercapacitor systems. These can exhibit electrical double layer phenomena and capacitances up to hundreds of F/g. Here, we demonstrate a new supercapacitor fabrication methodology based around the microphase separation of PS-b-PMMA which has been used to prepare copper nanoelectrodes of dimension -13 nm. These structures provide excellent capacitive performance with a maximum specific capacitance of -836 F/g for a current density of 8.06 A/g at a discharge current as high as 75 mA. The excellent performance is due to a high surface area: volume ratio. We suggest that this highly novel, easily fabricated structure might have a number of important applications.

9.
ACS Nano ; 7(8): 6583-96, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23859379

ABSTRACT

Microphase separation of block copolymer (BCPs) thin films has high potential as a surface patterning technique. However, the process times (during thermal or solvent anneal) can be inordinately long, and for it to be introduced into manufacturing, there is a need to reduce these times from hours to minutes. We report here BCP self-assembly on two different systems, polystyrene-b-polymethylmethacrylate (PS-b-PMMA) (lamellar- and cylinder-forming) and polystyrene-b-polydimethylsiloxane (PS-b-PDMS) (cylinder-forming) by microwave irradiation to achieve ordering in short times. Unlike previous reports of microwave assisted microphase segregation, the microwave annealing method reported here was undertaken without addition of solvents. Factors such as the anneal time and temperature, BCP film thickness, substrate surface type, etc. were investigated for their effect of the ordering behavior. The microwave technique was found to be compatible with graphoepitaxy, and in the case of the PS-b-PDMS system, long-range translational alignment of the BCP domains was observed within the topographic patterns. To demonstrate the usefulness of the method, the BCP nanopatterns were turned into an 'on-chip' resist by an initial plasma etch and these were used to transfer the pattern into the substrate.

10.
Langmuir ; 29(28): 8959-68, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23751134

ABSTRACT

The directed self-assembly (DSA) of block copolymer (BCP) thin films could enable a scalable, bottom-up alternative to photolithography for the generation of substrate features. The PS-b-PDMS (polystyrene-b-polydimethylsiloxane) system is attractive as it can be extended toward very small feature sizes as well as having two blocks that can be readily differentiated during pattern transfer. However, PS-b-PDMS offers a considerable challenge because of the chemical differences in the blocks which lead to poor surface-wetting, poor pattern orientation control, and structural instabilities. These challenges can be mitigated by careful definition of the interface chemistry between the substrate and the BCP. Here, we report controlled pattern formation in cylinder forming PS-b-PDMS system by use of a carefully controlled PDMS brush. Control of the brush was achieved using exposure to UV-O3 for varying time. It is demonstrated that this treatment enhances surface wetting and coverage of the BCP. The modified brushes also enable DSA of the BCP on topographically patterned substrates. UV-O3 exposure was also used to reveal the BCP structure and provide an in situ "hard mask" for pattern transfer to the substrate.

11.
Langmuir ; 29(19): 5905-10, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23594126

ABSTRACT

Confocal Raman spectroscopy was undertaken to identify separate layers of PLGA and gentamicin sulfate (GS) coatings on a titanium alloy substrate for a novel drug-delivery system. Additionally, it was found that it was possible to measure the layer thickness and uniformity of the PLGA accurately by detecting intensity and wavelength changes in the vibrational bands of the copolymer bonds. Further analysis of the materials was done using FIB, SEM/EDX, and profilometry; these techniques were used to confirm the findings of the Raman data. It was determined that the substrate was extremely rough and therefore the coating was not uniform in thickness but the materials were uniformly dispersed. Most importantly, two distinct GS and PLGA layers were present.


Subject(s)
Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Drug Delivery Systems , Gentamicins/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Spectrum Analysis, Raman
12.
Langmuir ; 29(9): 2809-20, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23363319

ABSTRACT

The use of block copolymer (BCP) thin films to generate nanostructured surfaces for device and other applications requires precise control of interfacial energies to achieve the desired domain orientation. Usually, the surface chemistry is engineered through the use of homo- or random copolymer brushes grown or attached to the surface. Herein, we demonstrate a facile, rapid, and tunable approach to surface functionalization using a molecular approach based on ethylene glycol attachment to the surface. The effectiveness of the molecular approach is demonstrated for the microphase separation of PS-b-PMMA and PS-b-PDMS BCPs in thin films and the development of nanoscale features at the substrate.

13.
Nanotechnology ; 24(6): 065503, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23340158

ABSTRACT

This paper details the fabrication of ultrathin silicon nanowires (SiNWs) on a silicon-on-insulator (SOI) substrate as an electrode for the electro-oxidation and sensing of ethanol. The nanowire surfaces were prepared by a block copolymer (BCP) nanolithographic technique using low molecular weight symmetric poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) to create a nanopattern which was transferred to the substrate using plasma etching. The BCP orientation was controlled using a hydroxyl-terminated random polymer brush of poly(styrene)-random-poly(methyl methacrylate) (HO-PS-r-PMMA). TEM cross-sections of the resultant SiNWs indicate an anisotropic etch process with nanowires of sub-10 nm feature size. The SiNWs obtained by etching show high crystallinity and there is no evidence of defect inclusion or amorphous region production as a result of the pattern transfer process. The high density of SiNWs at the substrate surface allowed the fabrication of a sensor for cyclic voltammetric detection of ethanol. The sensor shows better sensitivity to ethanol and a faster response time compared to widely used polymer nanocomposite based sensors.

14.
ACS Appl Mater Interfaces ; 5(1): 88-97, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23227917

ABSTRACT

Block copolymer (BCP) microphase separation at substrate surfaces might enable the generation of substrate features in a scalable, bottom-up fashion, provided that the pattern structure, orientation, and alignment can be strictly controlled. The PS-b-PDMS (polystyrene-b-polydimethylsiloxane) system is attractive because it can form small features and the two blocks can be readily differentiated during pattern transfer. However, PS-b-PDMS offers a considerable challenge, because of the chemical differences in the blocks, which leads to poor surface wetting, poor pattern orientation control, and structural instabilities. These challenges are considerably greater when line patterns must be created, and this is the focus of the current work. Here, we report controlled pattern formation in cylinder-forming PS-b-PDMS by anchoring different types of hydroxyl-terminated homopolymer and random copolymer brushes on planar and topographically patterned silicon substrates for the fabrication of nanoscale templates. It is demonstrated that non-PDMS-OH-containing brushes may be used, which offers an advantage for substrate feature formation. To demonstrate the three-dimensional (3-D) film structure and show the potential of this system toward applications such as structure generation, the PDMS patterns were transferred to the underlying substrate to fabricate nanoscale features with a feature size of ~14 nm.

15.
J Colloid Interface Sci ; 393: 192-202, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23218235

ABSTRACT

The use of random copolymer brushes (polystyrene-r-polymethylmethacrylate--PS-r-PMMA) to 'neutralise' substrate surfaces and ordain perpendicular orientation of the microphase separated lamellae in symmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymers (BCPs) is well known. However, less well known is how the brushes interact with both the substrate and the BCP, and how this might change during thermal processing. A detailed study of changes in these films for different brush and diblock PS-b-PMMA molecular weights is reported here. In general, self-assembly and pattern formation is altered little, and a range of brush molecular weights are seen to be effective. However, on extended anneal times, the microphase separated films can undergo dimension changes and loss of order. This process is not related to any complex microphase separation dynamics but rather a degradation of methacrylate components in the film. The data suggest that care must be taken in interpretation of structural changes in these systems as being due to BCP only effects.


Subject(s)
Methacrylates/chemistry , Polystyrenes/chemistry , Methacrylates/chemical synthesis , Molecular Weight , Particle Size , Polystyrenes/chemical synthesis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...