Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 247-258, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38512070

ABSTRACT

Data acquisition and processing for cryo-electron tomography can be a significant bottleneck for users. To simplify and streamline the cryo-ET workflow, Tomo Live, an on-the-fly solution that automates the alignment and reconstruction of tilt-series data, enabling real-time data-quality assessment, has been developed. Through the integration of Tomo Live into the data-acquisition workflow for cryo-ET, motion correction is performed directly after each of the acquired tilt angles. Immediately after the tilt-series acquisition has completed, an unattended tilt-series alignment and reconstruction into a 3D volume is performed. The results are displayed in real time in a dedicated remote web platform that runs on the microscope hardware. Through this web platform, users can review the acquired data (aligned stack and 3D volume) and several quality metrics that are obtained during the alignment and reconstruction process. These quality metrics can be used for fast feedback for subsequent acquisitions to save time. Parameters such as Alignment Accuracy, Deleted Tilts and Tilt Axis Correction Angle are visualized as graphs and can be used as filters to export only the best tomograms (raw data, reconstruction and intermediate data) for further processing. Here, the Tomo Live algorithms and workflow are described and representative results on several biological samples are presented. The Tomo Live workflow is accessible to both expert and non-expert users, making it a valuable tool for the continued advancement of structural biology, cell biology and histology.


Subject(s)
Electron Microscope Tomography , Image Processing, Computer-Assisted , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods , Data Accuracy , Workflow
2.
J Muscle Res Cell Motil ; 44(3): 165-178, 2023 09.
Article in English | MEDLINE | ID: mdl-37115473

ABSTRACT

Myosin binding protein C (MyBP-C) is an accessory protein of the thick filament in vertebrate cardiac muscle arranged over 9 stripes of intervals of 430 Å in each half of the A-band in the region called the C-zone. Mutations in cardiac MyBP-C are a leading cause of hypertrophic cardiomyopathy the mechanism of which is unknown. It is a rod-shaped protein composed of 10 or 11 immunoglobulin- or fibronectin-like domains labelled C0 to C10 which binds to the thick filament via its C-terminal region. MyBP-C regulates contraction in a phosphorylation dependent fashion that may be through binding of its N-terminal domains with myosin or actin. Understanding the 3D organisation of MyBP-C in the sarcomere environment may provide new light on its function. We report here the fine structure of MyBP-C in relaxed rat cardiac muscle by cryo-electron tomography and subtomogram averaging of refrozen Tokuyasu cryosections. We find that on average MyBP-C connects via its distal end to actin across a disc perpendicular to the thick filament. The path of MyBP-C suggests that the central domains may interact with myosin heads. Surprisingly MyBP-C at Stripe 4 is different; it has weaker density than the other stripes which could result from a mainly axial or wavy path. Given that the same feature at Stripe 4 can also be found in several mammalian cardiac muscles and in some skeletal muscles, our finding may have broader implication and significance. In the D-zone, we show the first demonstration of myosin crowns arranged on a uniform 143 Å repeat.


Subject(s)
Actins , Electron Microscope Tomography , Rats , Animals , Actins/metabolism , Myocardium/metabolism , Myosins/metabolism , Actin Cytoskeleton/metabolism , Mammals/metabolism
3.
J Vis Exp ; (181)2022 03 16.
Article in English | MEDLINE | ID: mdl-35377368

ABSTRACT

Cryo-electron microscopy (cryo-EM) has been established as a routine method for protein structure determination during the past decade, taking an ever-increasing share of published structural data. Recent advances in TEM technology and automation have boosted both the speed of data collection and quality of acquired images while simultaneously decreasing the required level of expertise for obtaining cryo-EM maps at sub-3 Å resolutions. While most of such high-resolution structures have been obtained using state-of-the-art 300 kV cryo-TEM systems, high-resolution structures can be also obtained with 200 kV cryo-TEM systems, especially when equipped with an energy filter. Additionally, automation of microscope alignments and data collection with real-time image quality assessment reduces system complexity and assures optimal microscope settings, resulting in increased yield of high-quality images and overall throughput of data collection. This protocol demonstrates the implementation of recent technological advances and automation features on a 200 kV cryo-transmission electron microscope and shows how to collect data for the reconstruction of 3D maps that are sufficient for de novo atomic model building. We focus on best practices, critical variables, and common issues that must be considered to enable the routine collection of such high-resolution cryo-EM datasets. Particularly the following essential topics are reviewed in detail: i) automation of microscope alignments, ii) selection of suitable areas for data acquisition, iii) optimal optical parameters for high-quality, high-throughput data collection, iv) energy filter tuning for zero-loss imaging, and v) data management and quality assessment. Application of the best practices and improvement of achievable resolution using an energy filter will be demonstrated on the example of apo-ferritin that was reconstructed to 1.6 Å, and Thermoplasma acidophilum 20S proteasome reconstructed to 2.1-Å resolution using a 200 kV TEM equipped with an energy filter and a direct electron detector.


Subject(s)
Electrons , Proteins , Automation , Cryoelectron Microscopy/methods , Microscopy, Electron, Transmission , Proteins/chemistry
4.
Nat Microbiol ; 4(11): 1978-1989, 2019 11.
Article in English | MEDLINE | ID: mdl-31358981

ABSTRACT

To navigate within the geomagnetic field, magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane-enveloped magnetite nanocrystals. In magnetotactic spirilla, magnetosomes become actively organized into chains by the filament-forming actin-like MamK and the adaptor protein MamJ, thereby assembling a magnetic dipole much like a compass needle. However, in Magnetospirillum gryphiswaldense, discontinuous chains are still formed in the absence of MamK. Moreover, these fragmented chains persist in a straight conformation indicating undiscovered structural determinants able to accommodate a bar magnet-like magnetoreceptor in a helical bacterium. Here, we identify MamY, a membrane-bound protein that generates a sophisticated mechanical scaffold for magnetosomes. MamY localizes linearly along the positive inner cell curvature (the geodetic cell axis), probably by self-interaction and curvature sensing. In a mamY deletion mutant, magnetosome chains detach from the geodetic axis and fail to accommodate a straight conformation coinciding with reduced cellular magnetic orientation. Codeletion of mamKY completely abolishes chain formation, whereas on synthetic tethering of magnetosomes to MamY, the chain configuration is regained, emphasizing the structural properties of the protein. Our results suggest MamY is membrane-anchored mechanical scaffold that is essential to align the motility axis of magnetotactic spirilla with their magnetic moment vector and to perfectly reconcile magnetoreception with swimming direction.


Subject(s)
Magnetosomes/metabolism , Magnetospirillum/physiology , Membrane Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Gene Deletion , Magnetosomes/genetics , Magnetospirillum/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Protein Domains
5.
Methods Mol Biol ; 1841: 45-57, 2018.
Article in English | MEDLINE | ID: mdl-30259479

ABSTRACT

Magnetotactic bacteria form unique prokaryotic organelles, termed magnetosomes, which consist of membrane-enclosed magnetite nanoparticles. Analysis of magnetosome biogenesis has been greatly facilitated by proteomic methods. These, however, require pure, highly enriched magnetosomes. Here, we describe the purification of magnetosomes from Magnetospirillum gryphiswaldense using high pressure cell disruption, and sequential purification by magnetic enrichment and sucrose density ultracentrifugation. The resulting enriched magnetosomes can be subsequently subjected to proteomic analyses or biotechnological applications.


Subject(s)
Bacteria/metabolism , Bacterial Proteins , Cell Fractionation , Magnetosomes , Proteome , Proteomics , Bacteria/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Cell Fractionation/methods , Magnetite Nanoparticles , Magnetosomes/metabolism , Magnetosomes/ultrastructure , Membrane Proteins/metabolism , Proteomics/methods , Ultracentrifugation
6.
J Proteomics ; 172: 89-99, 2018 02 10.
Article in English | MEDLINE | ID: mdl-29054541

ABSTRACT

Magnetotactic bacteria produce chains of complex membrane-bound organelles that direct the biomineralization of magnetic nanoparticles and serve for magnetic field navigation. These magnetosome compartments have recently emerged as a model for studying the subcellular organization of prokaryotic organelles. Previous studies indicated the presence of specific proteins with various functions in magnetosome biosynthesis. However, the exact composition and stoichiometry of the magnetosome subproteome have remained unknown. In order to quantify and unambiguously identify all proteins specifically targeted to the magnetosome membrane of the Alphaproteobacterium Magnetospirillum gryphiswaldense, we analyzed the protein composition of several cellular fractions by semi-quantitative mass spectrometry. We found that nearly all genuine magnetosome membrane-integral proteins belong to a well-defined set of previously identified proteins encoded by gene clusters within a genomic island, indicating a highly controlled protein composition. Magnetosome proteins were present in different quantities with up to 120 copies per particle as estimated by correlating our results with available quantitative Western blot data. This high abundance suggests an unusually crowded protein composition of the membrane and a tight packing with transmembrane domains of integral proteins. Our findings will help to further define the structure of the organelle and contribute to the elucidation of magnetosome biogenesis. BIOLOGICAL SIGNIFICANCE: Magnetosomes are one of the most complex bacterial organelles and consist of membrane-bounded crystals of magnetic minerals. The exact composition and stoichiometry of the associated membrane integral proteins are of major interest for a deeper understanding of prokaryotic organelle assembly; however, previous proteomic studies failed to reveal meaningful estimations due to the lack of precise and quantitative data, and the inherently high degree of accumulated protein contaminants in purified magnetosomes. Using a highly sensitive mass spectrometer, we acquired proteomic data from several cellular fractions of a magnetosome producing magnetotactic bacterium and developed a comparative algorithm to identify all genuine magnetosome membrane-integral proteins and to discriminate them from contaminants. Furthermore, by combining our data with previously published quantitative Western blot data, we were able to model the protein copy number and density within the magnetosome membrane. Our results suggest that the magnetosome membrane is specifically associated with a small subset of integral proteins that are tightly packed within the lipid layer. Our study provides by far the most comprehensive estimation of magnetosomal protein composition and stoichiometry and will help to elucidate the complex process of magnetosome biogenesis.


Subject(s)
Magnetosomes/chemistry , Magnetospirillum/ultrastructure , Proteome/analysis , Mass Spectrometry , Membrane Proteins/analysis , Multigene Family
7.
PLoS Genet ; 12(6): e1006101, 2016 06.
Article in English | MEDLINE | ID: mdl-27286560

ABSTRACT

Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins.


Subject(s)
Cell Membrane/metabolism , Magnetosomes , Magnetospirillum/metabolism , Cation Transport Proteins/genetics , Ferrosoferric Oxide/metabolism , Iron/metabolism , Magnetosomes/genetics , Magnetosomes/metabolism , Magnetosomes/ultrastructure , Magnetospirillum/genetics
8.
Appl Environ Microbiol ; 82(10): 3032-3041, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26969709

ABSTRACT

UNLABELLED: Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches. IMPORTANCE: Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of magnetosome biosynthesis had not been achieved, owing to the difficulties of large-scale genome engineering in the recalcitrant magnetotactic bacteria. In this study, we established and systematically explored a strategy for the overexpression of magnetosome biosynthesis genes by genomic amplification of single and multiple magnetosome gene clusters via sequential chromosomal insertion by transposition. Our findings also indicate that the expression levels of magnetosome proteins together limit the upper size and number of magnetosomes within the cell. We demonstrate that tuned overexpression of magnetosome gene clusters provides a powerful strategy for the precise control of magnetosome size and number.


Subject(s)
Gene Dosage , Genes, Bacterial , Magnetosomes/metabolism , Magnetospirillum/genetics , Magnetospirillum/metabolism , Multigene Family , Organelle Biogenesis
9.
J Bacteriol ; 196(14): 2658-69, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24816605

ABSTRACT

Biosynthesis of bacterial magnetosomes, which are intracellular membrane-enclosed, nanosized magnetic crystals, is controlled by a set of >30 specific genes. In Magnetospirillum gryphiswaldense, these are clustered mostly within a large conserved genomic magnetosome island (MAI) comprising the mms6, mamGFDC, mamAB, and mamXY operons. Here, we demonstrate that the five previously uncharacterized genes of the mms6 operon have crucial functions in the regulation of magnetosome biomineralization that partially overlap MamF and other proteins encoded by the adjacent mamGFDC operon. While all other deletions resulted in size reduction, elimination of either mms36 or mms48 caused the synthesis of magnetite crystals larger than those in the wild type (WT). Whereas the mms6 operon encodes accessory factors for crystal maturation, the large mamAB operon contains several essential and nonessential genes involved in various other steps of magnetosome biosynthesis, as shown by single deletions of all mamAB genes. While single deletions of mamL, -P, -Q, -R, -B, -S, -T, and -U showed phenotypes similar to those of their orthologs in a previous study in the related M. magneticum, we found mamI and mamN to be not required for at least rudimentary iron biomineralization in M. gryphiswaldense. Thus, only mamE, -L, -M, -O, -Q, and -B were essential for formation of magnetite, whereas a mamI mutant still biomineralized tiny particles which, however, consisted of the nonmagnetic iron oxide hematite, as shown by high-resolution transmission electron microscopy (HRTEM) and the X-ray absorption near-edge structure (XANES). Based on this and previous studies, we propose an extended model for magnetosome biosynthesis in M. gryphiswaldense.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Magnetospirillum/metabolism , Operon/physiology , Bacterial Proteins/genetics , Iron/metabolism , Magnetospirillum/genetics , Mutagenesis , Mutation , Operon/genetics
10.
Appl Environ Microbiol ; 80(14): 4323-30, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24814778

ABSTRACT

Magnetotactic bacteria have emerged as excellent model systems to study bacterial cell biology, biomineralization, vesicle formation, and protein targeting because of their ability to synthesize single-domain magnetite crystals within unique organelles (magnetosomes). However, only few species are amenable to genetic manipulation, and the limited methods for site-specific mutagenesis are tedious and time-consuming. Here, we report the adaptation and application of a fast and convenient technique for markerless chromosomal manipulation of Magnetospirillum gryphiswaldense using a single antibiotic resistance cassette and galK-based counterselection for marker recycling. We demonstrate the potential of this technique by genomic excision of the phbCAB operon, encoding enzymes for polyhydroxyalkanoate (PHA) synthesis, followed by chromosomal fusion of magnetosome-associated proteins to fluorescent proteins. Because of the absence of interfering PHA particles, these engineered strains are particularly suitable for microscopic analyses of cell biology and magnetosome biosynthesis.


Subject(s)
Chromosomes, Bacterial/genetics , Gene Deletion , Genes, Bacterial , Magnetospirillum/genetics , Colony Count, Microbial , Culture Media , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Genomics/methods , Magnetosomes/microbiology , Microscopy, Electron, Transmission , Mutagenesis, Site-Directed , Operon , Polyhydroxyalkanoates/metabolism
11.
PLoS One ; 9(5): e97154, 2014.
Article in English | MEDLINE | ID: mdl-24819161

ABSTRACT

Cation diffusion facilitators (CDF) are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all organisms. CDFs were found to be involved in numerous human health conditions, such as Type-II diabetes and neurodegenerative diseases. In this work, we established the magnetite biomineralizing alphaproteobacterium Magnetospirillum gryphiswaldense as an effective model system to study CDF-related Type-II diabetes. Here, we introduced two ZnT-8 Type-II diabetes-related mutations into the M. gryphiswaldense MamM protein, a magnetosome-associated CDF transporter essential for magnetite biomineralization within magnetosome vesicles. The mutations' effects on magnetite biomineralization and iron transport within magnetosome vesicles were tested in vivo. Additionally, by combining several in vitro and in silico methodologies we provide new mechanistic insights for ZnT-8 polymorphism at position 325, located at a crucial dimerization site important for CDF regulation and activation. Overall, by following differentiated, easily measurable, magnetism-related phenotypes we can utilize magnetotactic bacteria for future research of CDF-related human diseases.


Subject(s)
Bacterial Proteins/metabolism , Cation Transport Proteins/metabolism , Diabetes Mellitus, Type 2/metabolism , Magnetosomes/metabolism , Magnetospirillum/cytology , Magnetospirillum/metabolism , Minerals/metabolism , Alleles , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Ferrosoferric Oxide/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Protein Multimerization , Protein Stability , Protein Structure, Quaternary , Protein Structure, Tertiary , Zinc/metabolism
12.
J Bacteriol ; 196(14): 2552-62, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24794567

ABSTRACT

The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense and other magnetotactic bacteria occurs only under suboxic conditions. However, the mechanism of oxygen regulation and redox control of biosynthesis of the mixed-valence iron oxide magnetite [FeII(FeIII)2O4] is still unclear. Here, we set out to investigate the role of aerobic respiration in both energy metabolism and magnetite biomineralization of M. gryphiswaldense. Although three operons encoding putative terminal cbb3-type, aa3-type, and bd-type oxidases were identified in the genome assembly of M. gryphiswaldense, genetic and biochemical analyses revealed that only cbb3 and bd are required for oxygen respiration, whereas aa3 had no physiological significance under the tested conditions. While the loss of bd had no effects on growth and magnetosome synthesis, inactivation of cbb3 caused pleiotropic effects under microaerobic conditions in the presence of nitrate. In addition to their incapability of simultaneous nitrate and oxygen reduction, cbb3-deficient cells had complex magnetosome phenotypes and aberrant morphologies, probably by disturbing the redox balance required for proper growth and magnetite biomineralization. Altogether, besides being the primary terminal oxidase for aerobic respiration, cbb3 oxidase may serve as an oxygen sensor and have a further role in poising proper redox conditions required for magnetite biomineralization.


Subject(s)
Electron Transport Complex IV/metabolism , Ferrosoferric Oxide/metabolism , Magnetospirillum/enzymology , Electron Transport Complex IV/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Genome, Bacterial , Magnetospirillum/genetics , Magnetospirillum/metabolism , Oxidation-Reduction
13.
PLoS One ; 9(3): e92141, 2014.
Article in English | MEDLINE | ID: mdl-24658343

ABSTRACT

Cation diffusion facilitators (CDF) are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all domains of life. CDF's were shown to be involved in several human diseases, such as Type-II diabetes and neurodegenerative diseases. In this work, we employed a multi-disciplinary approach to study the activation mechanism of the CDF protein family. For this we used MamM, one of the main ion transporters of magnetosomes--bacterial organelles that enable magnetotactic bacteria to orientate along geomagnetic fields. Our results reveal that the cytosolic domain of MamM forms a stable dimer that undergoes distinct conformational changes upon divalent cation binding. MamM conformational change is associated with three metal binding sites that were identified and characterized. Altogether, our results provide a novel auto-regulation mode of action model in which the cytosolic domain's conformational changes upon ligand binding allows the priming of the CDF into its transport mode.


Subject(s)
Cation Transport Proteins/metabolism , Cations, Divalent/metabolism , Magnetosomes/chemistry , Zinc/metabolism , Humans , Magnetosomes/genetics , Magnetosomes/ultrastructure , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Multimerization , X-Ray Diffraction
14.
Nat Nanotechnol ; 9(3): 193-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24561353

ABSTRACT

The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temperature is challenging. In nature, magnetosomes--membrane-bound magnetic nanocrystals with unprecedented magnetic properties--can be biomineralized by magnetotactic bacteria. However, these microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidious microorganisms within other organisms could therefore greatly expand their nanotechnological and biomedical applications. So far, this has been hindered by the structural and genetic complexity of the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here, we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Magnetospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored magnetic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous magnetization of various organisms by synthetic biology.


Subject(s)
Gene Transfer Techniques , Magnetosomes/genetics , Magnetospirillum/genetics , Multigene Family , Nanostructures/microbiology , Rhodospirillum rubrum/genetics , Biotechnology/methods , Genes, Bacterial , Magnetosomes/metabolism , Nanostructures/ultrastructure , Nanotechnology/methods , Rhodospirillum rubrum/metabolism , Rhodospirillum rubrum/ultrastructure
15.
J Bacteriol ; 196(3): 650-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24272781

ABSTRACT

Midcell selection, septum formation, and cytokinesis in most bacteria are orchestrated by the eukaryotic tubulin homolog FtsZ. The alphaproteobacterium Magnetospirillum gryphiswaldense (MSR-1) septates asymmetrically, and cytokinesis is linked to splitting and segregation of an intracellular chain of membrane-enveloped magnetite crystals (magnetosomes). In addition to a generic, full-length ftsZ gene, MSR-1 contains a truncated ftsZ homolog (ftsZm) which is located adjacent to genes controlling biomineralization and magnetosome chain formation. We analyzed the role of FtsZm in cell division and biomineralization together with the full-length MSR-1 FtsZ protein. Our results indicate that loss of FtsZm has a strong effect on microoxic magnetite biomineralization which, however, could be rescued by the presence of nitrate in the medium. Fluorescence microscopy revealed that FtsZm-mCherry does not colocalize with the magnetosome-related proteins MamC and MamK but is confined to asymmetric spots at midcell and at the cell pole, coinciding with the FtsZ protein position. In Escherichia coli, both FtsZ homologs form distinct structures but colocalize when coexpressed, suggesting an FtsZ-dependent recruitment of FtsZm. In vitro analyses indicate that FtsZm is able to interact with the FtsZ protein. Together, our data suggest that FtsZm shares key features with its full-length homolog but is involved in redox control for magnetite crystallization.


Subject(s)
Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Magnetospirillum/metabolism , Nitrates/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Division/physiology , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Magnetospirillum/genetics , Models, Molecular , Molecular Sequence Data , Protein Conformation
16.
Mol Microbiol ; 89(5): 872-86, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23889511

ABSTRACT

Magnetospirillum gryphiswaldense uses intracellular chains of membrane-enveloped magnetite crystals, the magnetosomes, to navigate within magnetic fields. The biomineralization of magnetite nanocrystals requires several magnetosome-associated proteins, whose precise functions so far have remained mostly unknown. Here, we analysed the functions of MamX and the Major Facilitator Superfamily (MFS) proteins MamZ and MamH. Deletion of either the entire mamX gene or elimination of its putative haem c-binding magnetochrome domains, and deletion of either mamZ or its C-terminal ferric reductase-like component resulted in an identical phenotype. All mutants displayed WT-like magnetite crystals, flanked within the magnetosome chains by poorly crystalline flake-like particles partly consisting of haematite. Double deletions of both mamZ and its homologue mamH further impaired magnetite crystallization in an additive manner, indicating that the two MFS proteins have partially redundant functions. Deprivation of ΔmamX and ΔmamZ cells from nitrate, or additional loss of the respiratory nitrate reductase Nap from ΔmamX severely exacerbated the magnetosome defects and entirely inhibited the formation of regular crystals, suggesting that MamXZ and Nap have similar, but independent roles in redox control of biomineralization. We propose a model in which MamX, MamZ and MamH functionally interact to balance the redox state of iron within the magnetosome compartment.


Subject(s)
Bacterial Proteins/metabolism , Ferrosoferric Oxide/metabolism , Magnetosomes/metabolism , Magnetospirillum/metabolism , Bacterial Proteins/genetics , Gene Deletion , Iron/metabolism , Magnetospirillum/genetics , Models, Biological , Models, Molecular , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...