Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 36(12): 1460-1470, 2016 12.
Article in English | MEDLINE | ID: mdl-27587484

ABSTRACT

Environmental heterogeneity and plant-plant interactions are key factors shaping plant communities. However, the spatial dimension of plant-plant interactions has seldom been addressed in field studies. This is at least partially rooted in a lack of methods that can accurately resolve functional processes in a spatially explicit manner. Isoscapes, that is, spatially explicit representations of stable isotope data, provide a versatile means to trace functional changes on spatial scales, for example, related to N-cycling (foliar δ15N) and water use efficiency (WUEi, foliar δ13C). In a case study in a nutrient-depleted Mediterranean dune ecosystem, we analysed the spatial impact of the invasive N2-fixing Acacia longifolia on three native species of different functional types using δ15N and δ13C isoscapes and spatial autocorrelation analyses. Isoscapes revealed strong spatial patterns in δ15N and δ13C with pronounced species-specific differences, demonstrating distinct spatial ranges of plant-plant interactions. A coniferous tree and an ericaceous dwarf shrub showed significant enrichment in δ15N within a range of 5-8 m surrounding the canopy of A. longifolia, indicating input of N originating from symbiotic N2-fixation by the invader. In the dwarf shrub, which was most responsive to invader influence, enrichment in δ13C additionally demonstrated spatially explicit changes to WUEi, while a native N2-fixer was unresponsive to the presence of the invader. Furthermore, δ15N and δ13C isoscapes yielded different patterns, indicating that plant-plant interactions can have distinct spatial distributions and ranges based on the process measured. Additionally, the magnitude of the effect differed between field situations with high and low invasion pressure. This study highlights that the spatial scale must be accounted for when assessing the effects and outcome of species interactions. Functional tracers such as stable isotopes enable us to quantify spatial ranges of plant-plant interactions, providing empirical data that can help to better understand and predict complex species interactions in multifaceted natural environments.


Subject(s)
Acacia/physiology , Ecosystem , Introduced Species , Trees/physiology , Carbon/metabolism , Nitrogen Fixation
2.
Photosynth Res ; 113(1-3): 297-309, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22618996

ABSTRACT

Stable carbon isotope signatures are often used as tracers for environmentally driven changes in photosynthetic δ(13)C discrimination. However, carbon isotope signatures downstream from carboxylation by Rubisco are altered within metabolic pathways, transport and respiratory processes, leading to differences in δ(13)C between carbon pools along the plant axis and in respired CO(2). Little is known about the within-plant variation in δ(13)C under different environmental conditions or between species. We analyzed spatial, diurnal, and environmental variations in δ(13)C of water soluble organic matter (δ(13)C(WSOM)) of leaves, phloem and roots, as well as dark-respired δ(13)CO(2) (δ(13)C(res)) in leaves and roots. We selected distinct light environments (forest understory and an open area), seasons (Mediterranean spring and summer drought) and three functionally distinct understory species (two native shrubs-Halimium halimifolium and Rosmarinus officinalis-and a woody invader-Acacia longifolia). Spatial patterns in δ(13)C(WSOM) along the plant vertical axis and between respired δ(13)CO(2) and its putative substrate were clearly species specific and the most δ(13)C-enriched and depleted values were found in δ(13)C of leaf dark-respired CO(2) and phloem sugars, ~-15 and ~-33 ‰, respectively. Comparisons between study sites and seasons revealed that spatial and diurnal patterns were influenced by environmental conditions. Within a species, phloem δ(13)C(WSOM) and δ(13)C(res) varied by up to 4 ‰ between seasons and sites. Thus, careful characterization of the magnitude and environmental dependence of apparent post-carboxylation fractionation is needed when using δ(13)C signatures to trace changes in photosynthetic discrimination.


Subject(s)
Acacia/physiology , Carbon Dioxide/metabolism , Carbon/metabolism , Cistaceae/physiology , Darkness , Environment , Rosmarinus/physiology , Carbon Isotopes , Cell Respiration/physiology , Circadian Rhythm/physiology , Organ Specificity , Phloem/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Plant Roots/physiology , Species Specificity , Time Factors , Water/metabolism
3.
Ecol Lett ; 15(5): 484-91, 2012 May.
Article in English | MEDLINE | ID: mdl-22409424

ABSTRACT

Plant-plant interactions are key processes shaping plant communities, but methods are lacking to accurately capture the spatial dimension of these processes. Isoscapes, i.e. spatially continuous observations of variations in stable isotope ratios, provide innovative methods to trace the spatial dimension of ecological processes at continental to global scales. Herein, we test the usefulness of nitrogen isoscapes (δ(15) N) for quantifying alterations in community functioning following exotic plant invasion. Nitrogen introduced by an exotic N(2) -fixing acacia could be accurately traced through the ecosystem and into the surrounding native vegetation by combining native species foliar δ(15) N with spatial information regarding plant location using geostatistical methods. The area impacted by N-addition was at least 3.5-fold greater than the physical area covered by the invader. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with invasion and in resolving the spatial component of within-community interactions.


Subject(s)
Ecosystem , Nitrogen Fixation/physiology , Nitrogen Isotopes/analysis , Plants/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Portugal
4.
Tree Physiol ; 30(12): 1499-514, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21071770

ABSTRACT

In this study we measured δ¹³C in various carbon pools along the basipetal transport pathway in co-occurring Pinus pinaster and Acacia longifolia trees under Mediterranean climate conditions in the field. Overall, species differences in photosynthetic discrimination resulted in more enriched δ¹³C values in the water-conserving overstory P. pinaster relative to the water-spending understory invasive A. longifolia. Post-photosynthetic fractionation effects resulted in differences in δ¹³C of water-soluble organic matter pools along the plant axis with progressive depletion in δ¹³C from the canopy to the trunk (∼6.5‰ depletion in A. longifolia and ∼0.8‰ depletion in P. pinaster). Regardless of these fractionation effects, phloem sap δ¹³C in both terminal branches and the main stem correlated well with environmental parameters driving photosynthesis for both species, indicating that phloem sap δ¹³C has potential as an integrative tracer of changes in canopy carbon discrimination (Δ¹³C). Furthermore, we illustrate that a simple model based on sap flow estimated canopy stomatal conductance (G(S)) and phloem sap δ¹³C measurements has significant potential as a tool for estimating canopy-level carbon assimilation rates.


Subject(s)
Acacia/metabolism , Carbon/metabolism , Phloem/physiology , Pinus/metabolism , Carbon Dioxide , Carbon Isotopes , Circadian Rhythm , Climate , Ecosystem , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Transpiration , Seasons , Water
5.
Tree Physiol ; 30(7): 866-75, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20462939

ABSTRACT

The means by which growth CO(2) concentration ([CO(2)]) affects anatomy and water relations responses to drought and vapour pressure deficit (VPD) were studied for yearly coppiced, 4-year-old Populus deltoides clones that were grown in either 400 mumol mol(-1) (ambient) or 800 mumol mol(-1) (elevated) CO(2) for 3 years. It was hypothesized that, during drought, trees growing in elevated [CO(2)] would have a lower volume flux density of water (J(V)), stomatal conductance (g(s)) and transpiration per leaf area (E), as well as a lower stomatal density and a greater stomatal response to drought and changes in VPD than would trees in ambient [CO(2)]. Trees in elevated [CO(2)] actually had higher J(V) values throughout the study, but did not differ from trees in ambient [CO(2)] with respect to g(s) or E under saturating light or E scaled from J(V) (E(scaled)), all of which indicates that the higher J(V) in elevated [CO(2)] resulted from those trees having greater leaf area and not from differences in g(s). Furthermore, although plants in elevated [CO(2)] had greater absolute leaf loss during the drought, the percentage of leaf area lost was similar to that of trees in ambient [CO(2)]. g(s) and E under saturating light were affected by changes in VPD after the first 9 days of the experiment, which coincided with a large decrease in water potential at a soil depth of 0.1 m. Trees in elevated [CO(2)] had a greater stomatal density and a lower wood density than trees in ambient [CO(2)], both traits that may make the trees more susceptible to xylem cavitation in severe drought. Drought and VPD effects for the P. deltoides clone were not ameliorated by long-term growth in elevated [CO(2)] compared with ambient [CO(2)], and plants in elevated [CO(2)] possessed anatomical traits that may result in greater stress associated with long-term drought.


Subject(s)
Carbon Dioxide/pharmacology , Droughts , Populus/physiology , Vapor Pressure , Water/metabolism , Environment , Plant Leaves , Populus/drug effects , Soil , Wood/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...