Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acad Radiol ; 18(11): 1349-57, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21889898

ABSTRACT

RATIONALE AND OBJECTIVES: The purpose of this study was to evaluate the possibility of detecting a fatty liver after binge drinking in an animal model using (1)H magnetic resonance spectroscopy ((1)H-MRS), dual-energy computed tomography (DECT), biochemistry, and the gold standard of histology. MATERIALS AND METHODS: In 20 inbred female Lewis rats, an alcoholic fatty liver was induced; 20 rats served as controls. To simulate binge drinking, each rat was given a dose of 9.3 g/kg body weight 50% ethanol twice, with 24 hours between applications. Forty-eight hours after the first injection, DECT and (1)H-MRS were performed. Fat content as well as triglycerides were also determined histologically and biochemically, respectively. To assess specific liver enzymes, blood was drawn from the orbital venous plexus. RESULTS: In all 20 animals in the experimental group, fatty livers were detected using (1)H-MRS, DECT, and biochemical and histologic analysis. The spectroscopic fat/water ratio and the biochemical determination were highly correlated (r = 0.892, P < .05). A significant correlation was found between (1)H-MRS and histologic analysis (r = 0.941, P < .001). Also, a positive linear correlation was found between the dual-energy computed tomographic density of ΔHU and the biochemical (r = 0.751, P < .05) and histologic (r = 0.786, P < .001) analyses. CONCLUSIONS: Quantification of hepatic fat content on (1)H-MRS showed high correlation with histologic and biochemical steatosis determination. In comparison to DECT, it is more suitable to reflect the severity of acute fatty liver.


Subject(s)
Alcohol Drinking , Fatty Liver/diagnosis , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Tomography, X-Ray Computed/methods , Animals , Disease Models, Animal , Female , Linear Models , Random Allocation , Rats , Rats, Inbred Lew , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...