Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 93(40): 13485-13494, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34478621

ABSTRACT

Three-dimensional cell cultures are of growing importance in biochemical research as they represent tissue features more accurately than standard two-dimensional systems, but to investigate these challenging new models an adaptation of established analytical techniques is required. Spatially resolved data for living organoids are needed to gain insight into transport processes and biochemical characteristics of domains with different nutrient supply and waste product removal. Within this work, we present an NMR-based approach to obtain dynamically radial metabolite profiles for cell spheroids, one of the most frequently used 3D models. Our approach combines an easy to reproduce custom-made measurement design, maintaining physiological conditions without inhibition of the NMR experiment, with spatially selective NMR pulse sequences. To overcome the inherently low sensitivity of NMR spectroscopy we excited slices instead of smaller cube-like voxels in combination with an efficient interleaved measurement approach and employed a commercially available cryogenic NMR probe. Finally, radial metabolite profiles could be obtained via double Abel inversion of the measured one-dimensional intensity profiles. Applying this method to Ty82 cancer cell spheroids demonstrates the achieved spatial resolution, for instance confirming exceedingly high lactic acid and strongly decreased glucose concentrations in the oxygen-depleted core of the spheroid. Furthermore, our approach can be employed to investigate fast and slow metabolic changes in single spheroids simultaneously, which is shown as an example of a spheroid degrading over several days after stopping the nutrient supply.


Subject(s)
Metabolomics , Spheroids, Cellular , Cell Culture Techniques , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
2.
ACS Biomater Sci Eng ; 6(8): 4424-4432, 2020 08 10.
Article in English | MEDLINE | ID: mdl-33455180

ABSTRACT

Melanin-mimetic polydopamine nanoparticles (PDA NPs) are emerging as promising candidates for topical and transdermal drug delivery because they mimic melanin, a naturally occurring skin pigment. However, our knowledge of their interactions with human skin remains limited. Hence, we set out to investigate the role of PDA NP surface chemistry in modulating their skin deposition. PDA NPs were synthesized by base-catalyzed oxidative self-polymerization of dopamine and functionalized with poly(ethylene glycol) (PEG) bearing different termini to obtain neutral, anionic, cationic, and hydrophobic PEGylated NPs. NPs were characterized by dynamic light scattering, transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray photoelectron spectroscopy. The NPs were then labeled with rhodamine B, and their skin interactions were investigated both in vitro, using a Strat-M membrane, and ex vivo, using excised whole thickness human skin. In vitro diffusion studies revealed that the NPs did not permeate transdermally, rather the NPs accumulated in the Strat-M membrane after 24 h of incubation. Membrane deposition of the NPs showed a strong dependence on surface chemistry, with anionic (unmodified and carboxyl-terminated PEGylated) NPs achieving the highest accumulation, followed by neutral and cationic NPs, whereas hydrophobic NPs achieved the lowest degree of accumulation. In ex vivo permeation studies, we observed that surface modification of PDA NPs with PEG serving as an antifouling coating is essential to maintaining colloidal stability upon skin contact. Moreover, anionic PEGylated NPs were able to achieve 78% skin accumulation, which was significantly higher than neutral and cationic NPs (51 and 34% accumulation, respectively). Our findings provide important insights into the role of surface chemistry in enhancing the skin accumulation of melanin-mimetic PDA NPs as potential sunscreens and carriers for skin-targeted treatments.


Subject(s)
Melanins , Nanoparticles , Humans , Indoles , Polymers
3.
Anal Chem ; 87(15): 7848-56, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26144222

ABSTRACT

Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is a promising method to close the "pressure gap", and thus, study the surface composition during heterogeneous reactions in situ. The specialized spectrometers necessary for this analytical technique have recently been adapted to operate with a conventional X-ray source, making it available for routine quantitative analysis in the laboratory. This is shown in the present in situ study of the partial oxidation of 2-propanol catalyzed with PdO nanoparticles supported on TiO2, which was investigated under reaction conditions as a function of gas composition (alcohol-to-oxygen ratio) and temperature. Exposure of the nanoparticles to 2-propanol at 30 °C leads to immediate partial reduction of the PdO, followed by a continuous reduction of the remaining PdO during heating. However, gaseous oxygen inhibits the reduction of PdO below 90 °C, and the oxidation of 2-propanol to carboxylates only occurs in the presence of oxygen above 90 °C. These results support the theory that metallic palladium is the active catalyst material, and they show that environmental conditions affect the nanoparticles and the reaction process significantly. The study also revealed challenges and limitations of this analytical method. Specifically, the intensity and fixed photon energy of a conventional X-ray source limit the spectral resolution and surface sensitivity of lab-based NAP-XPS, which affect precision and accuracy of the quantitative analysis.

4.
Langmuir ; 29(41): 12834-43, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24053195

ABSTRACT

The synthesis of grafted PMMA homopolymer films is reported using a surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization from a RAFT-agent immobilized on a silanized stainless steel surface. Therefore, stainless steel surfaces were hydroxylated with piranha solution followed by silanization with 3-aminopropylsilane (APS). The pendant primary amino groups of the cross-linked polysiloxane layer were reacted with 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid N-hydroxysuccinimide ester to produce a surface with covalently immobilized RAFT agents. PMMA homopolymers of different molecular weights between 13 060 and 45 000 g/mol were then prepared by a surface-initiated RAFT polymerization. Molecular weight (MW) and polydispersity index (PDI) were determined from sacrificial polymerization in solution. The different steps of stainless steel surface modification and the ultrathin films were investigated using atomic force microscopy (AFM), static, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance infrared spectroscopy (ATR-IR), and ellipsometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...