Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Syst Rev ; 13(1): 150, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840193

ABSTRACT

BACKGROUND: Clinical trials investigating acetabular fractures are heterogeneous in their investigated outcomes and their corresponding measurements. Standardization may facilitate comparability and pooling of research results, which would lead to an increase in knowledge about the optimal treatment of acetabular fractures, resulting in long-term evidence-based treatment decisions and improvements in patient care. The aim of this systematic review is to identify the reported outcomes and their measurements from studies on treatments for acetabular fractures to develop a core outcome set which contains the most relevant outcome measures to be included in future studies. METHODS: Studies published in English and German including patients aged 16 years and older, with a surgically treated acetabular fracture, will be included. Studies with nonsurgical treatment, pathologic fractures, polytraumatized patients, and patients younger than 16 years of age will be excluded because other outcomes may be of interest in these cases. Any prospective and retrospective study will be included. Systematic reviews will be excluded, but their included studies will be screened for eligibility. The literature will be searched on MEDLINE, CENTRAL, Web of Science, ClinicalTrials.gov, and WHO ICTRP. Risk of selective reporting of outcomes will be assessed using the Outcome Reporting Bias in Trials classification system. Heterogeneously defined outcomes that measure the same outcome will be grouped and subsequently categorized into outcome domains using the taxonomy of the Core Outcome Measures in Effectiveness Trials Initiative. DISCUSSION: It is expected that a high number of studies will be included, and many outcomes will be identified using different definitions and measurement instruments. A limitation of this systematic review is that only previously investigated outcomes will be detected, thus disregarding potentially relevant outcomes. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022357644.


Subject(s)
Acetabulum , Fractures, Bone , Systematic Reviews as Topic , Humans , Acetabulum/injuries , Fractures, Bone/therapy , Outcome Assessment, Health Care , Research Design
2.
Acta Orthop ; 95: 290-297, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874493

ABSTRACT

BACKGROUND AND PURPOSE: Recommendations regarding fragment-size-dependent screw fixation trajectory for coronal plane fractures of the posterior femoral condyles (Hoffa fractures) are lacking. The aim of this study was to compare the biomechanical properties of anteroposterior (AP) and crossed posteroanterior (PA) screw fixations across differently sized Hoffa fractures on human cadaveric femora. PATIENTS AND METHODS: 4 different sizes of lateral Hoffa fractures (n = 12 x 4) were created in 48 distal human femora according to the Letenneur classification: (i) type I, (ii) type IIa, (ii) type IIb, and (iv) type IIc. Based on bone mineral density (BMD), specimens were assigned to the 4 fracture clusters and each cluster was further assigned to fixation with either AP (n = 6) or crossed PA screws (n = 6) to ensure homogeneity of BMD values and comparability between the different test conditions. All specimens were biomechanically tested under progressively increasing cyclic loading until failure, capturing the interfragmentary movements via motion tracking. RESULTS: For Letenneur type I fractures, kilocycles to failure (mean difference [∆] 2.1, 95% confidence interval [CI] -1.3 to 5.5), failure load (∆ 105 N, CI -83 to 293), axial displacement (∆ 0.3 mm, CI -0.8 to 1.3), and fragment rotation (∆ 0.5°, CI -3.2 to 2.1) over 5.0 kilocycles did not differ significantly between the 2 screw trajectories. For each separate subtype of Letenneur type II fractures, fixation with crossed PA screws resulted in significantly higher kilocycles to failure (∆ 6.7, CI 3.3-10.1 to ∆ 8.9, CI 5.5-12.3) and failure load (∆ 275 N, CI 87-463 to ∆ 438, CI 250-626), as well as, less axial displacement from 3.0 kilocycles onwards (∆ 0.4°, CI 0.03-0.7 to ∆ 0.5°, CI 0.01-0.9) compared with AP screw fixation. CONCLUSION: Irrespective of the size of Letenneur type II fractures, crossed PA screw fixation provided greater biomechanical stability than AP-configured screws, whereas both screw fixation techniques demonstrated comparable biomechanical competence for Letenneur type I fractures. Fragment-size-dependent treatment strategies might be helpful to determine not only the screw configuration but also the surgical approach.


Subject(s)
Bone Screws , Cadaver , Femoral Fractures , Fracture Fixation, Internal , Humans , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Biomechanical Phenomena , Femoral Fractures/surgery , Aged , Female , Male , Bone Density , Middle Aged , Aged, 80 and over , Cohort Studies
3.
Orthop J Sports Med ; 12(6): 23259671241253836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881852

ABSTRACT

Background: The treatment of bony glenoid defects after anteroinferior shoulder dislocation currently depends on the amount of glenoid bone loss (GBL). Recent studies have described the glenoid concavity as an essential factor for glenohumeral stability. The role of glenoid concavity in the presence of soft tissue and muscle forces is still unknown. Hypothesis: Glenoid concavity would have a major impact on glenohumeral stability in an active-assisted biomechanical model including soft tissue and the rotator cuff's compression forces. Study Design: Controlled laboratory study. Methods: In 8 human shoulder specimens, individual coordinate systems were calculated based on anatomic landmarks. The glenoid concavity was measured biomechanically and based on computed tomography. Static load was applied to the rotator cuff tendons and the deltoid muscle. In a robotic test setup, anteriorly directed force was applied to the humeral head until translation of 5 mm (Nant) was achieved. Nant was used as a parameter indicating shoulder stability. This was performed in the following testing stages: (1) intact joint, (2) labral lesion, (3) 10% GBL, and (4) 20% GBL. The 8 specimens were divided equally into 2 subgroups (low concavity [LC] versus high concavity [HC]), with 4 specimens each, according to the previously measured concavity. Results: Anterior glenohumeral stability was highly correlated with the native glenoid concavity (R 2 = 0.8). In the testing stages 1 to 3, we found a significantly higher mean stability in the HC subgroup compared with the LC subgroup (P≤ .0142). The HC subgroup still showed higher absolute Nant values with 20% GBL; however, there was no significant difference from the LC subgroup. The loss of stability in 20% GBL was correlated with the initial concavity (R 2 = 0.86). Thus, a higher loss of Nant in the HC subgroup was observed (P = .0049). Conclusion: In an active-assisted model with intact soft tissue surrounding and muscular compression forces, the glenoid concavity correlates with shoulder stability. In bony defects, loss of concavity is an essential factor causing instability. Due to their significantly higher native stability, glenoids with HC can tolerate a higher amount of GBL. Clinical Relevance: Glenoid concavity should be considered in an individualized treatment of bony glenoid defects. Further studies are required to establish reference values and develop therapeutic algorithms.

4.
Article in English | MEDLINE | ID: mdl-38568230

ABSTRACT

PURPOSE: The study aims to investigate the influence of patient- and fracture-specific factors on the occurrence of complications after osteosynthesis of patella fractures and to compare knee joint function, activity, and subjective pain levels after a regular postoperative course and after complications in the medium term. METHODS: This retrospective, multicenter cohort study examined patients who received surgery for patella fracture at level 1 trauma centers between 2013 and 2018. Patient demographics and fracture-specific variables were evaluated. Final follow-up assessments included patient-reported pain scores (NRS), subjective activity and knee function scores (Tegner Activity Scale, Lysholm score, IKDC score), complications, and revisions. RESULTS: A total of 243 patients with a mean follow-up of 63.4 ± 21.3 months were included. Among them, 66.9% of patients underwent tension band wiring (TBW), 19.0% received locking plate osteosynthesis (LPO), and 14.1% underwent screw osteosynthesis (SO). A total of 38 patients (15.6%) experienced complications (TBW: 16.7%; LPO: 15.2%; SO: 11.8%). Implant-related complications of atraumatic fragment dislocation and material insufficiency/dislocation, accounted for 50% of all complications, were significantly more common after TBW than LPO (p = 0.015). No patient-specific factor was identified as a general cause for increased complications. Overall, particularly following complications such as limited range of motion or traumatic refracture, functional knee scores were significantly lower and pain levels were significantly higher at the final follow-up when a complication occurred. Implant-related complications, however, achieved functional scores comparable to a regular postoperative course without complications after revision surgery. CONCLUSION: The present study demonstrated that implant-related complications occurred significantly more often after TBW compared to LPO. The complication rates were similar in all groups.

5.
Orthop J Sports Med ; 12(4): 23259671241240375, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576875

ABSTRACT

Background: Concerns regarding the primary stability of early adjustable loop button (ALB) devices for cortical fixation of tendon grafts in anterior cruciate ligament reconstruction (ACLR) have led to the development of new implant designs. Purpose: To evaluate biomechanical stability of recent ALB implants in comparison with a continuous loop button (CLB) device. Study Design: Controlled laboratory study. Methods: ACLR was performed in a porcine model (n = 40) using 2-strand porcine flexor tendons with a diameter of 8 mm. Three ALB devices (Infinity Button [ALB1 group]; Tightrope II RT [ALB2 group]; A-TACK [ALB3 group]) and 1 CLB device (FlippTack with polyethylene suture) were used for cortical tendon graft fixation. Cyclic loading (1000 cycles up to 250 N) with complete unloading were applied to the free end of the tendon graft using a uniaxial testing machine, followed by load to failure. Elongation, stiffness, yield load, and ultimate failure load were recorded and compared between the groups using a Kruskal-Wallis test with post hoc Dunn correction. Results: Elongation after 1000 cycles at 250 N was similar between groups (ALB1, 4.5 ± 0.7 mm; ALB2, 4.8 ± 0.8 mm; ALB3, 4.5 ± 0.6 mm; CLB, 4.5 ± 0.8 mm), as was load to failure (ALB1, 838 ± 109 N; ALB2, 930 ± 89 N; ALB3, 809 ± 103 N; CLB, 842 ± 80 N). Stiffness was significantly higher in the ALB1 group compared with the CLB group (262.3 ± 21.6 vs 229.3 ± 15.1 N/mm; P < .05). No significant difference was found between the 4 groups regarding yield load. Constructs failed either by rupture of the loop, breakage of the button, or rupture of the tendon. Conclusion: The tested third-generation ALB devices for cortical fixation in ACLR withstood cyclic loading with complete unloading without significant differences to a CLB device. Clinical Relevance: The third-generation ALB devices tested in the present study provided biomechanical stability comparable with that of a CLB device. Furthermore, ultimate failure loads of all tested implants exceeded the loads expected to occur in the postoperative period after ACLR.

6.
Dtsch Arztebl Int ; (Forthcoming)2024 06 28.
Article in English | MEDLINE | ID: mdl-38652842

ABSTRACT

BACKGROUND: Little is known about the frequency and results of conservative treatment of proximal humerus fractures in older individuals. METHODS: Billing data of the BARMER health insurance carrier for all patients of age 65 and above with proximal humerus fractures in the years 2005-2021 were retrospectively analyzed with multivariable Cox regression models, taking account of the patients' age, sex, and comorbidity profiles. The defined primary endpoints were overall survival (OS), major adverse events (MAE), thromboembolic events (TE), and complications of surgery or of trauma. Multivariable p values for the effect of treatment on all primary endpoints were jointly adjusted with the Bonferroni-Holm method. RESULTS: 54% of 81 909 patients were treated conservatively. Conservative treatment was more common in those who received their diagnosis as outpatients (79.5%, vs. 37.2% for inpatients). Operative treatment was associated with significantly longer overall survival (long-term HR 0.89, 95% confidence interval [0,86; 0,91]) and fewer MAE (0.90; [0.88; 0.92]) and TE (0.89; [0.87; 0.92]), but more complications due to surgery or trauma (1.66; [1,.4; 1.78]; all p < 0.001). 3.1% of the patients who had been initially treated conservatively underwent surgery within 6 months of their diagnosis. Risk factors for the failure of conservative treatment included alcohol abuse, obesity, cancer, diabetes mellitus, Parkinson disease, and osteoporosis. CONCLUSION: The conservative treatment of proximal humerus fracture is associated with a lower overall rate of complications due to surgery or trauma, but also with more MAE and TE and higher overall mortality. These findings underline the need for individualized and risk-adjusted treatment recommendations.

7.
Orthop J Sports Med ; 12(3): 23259671241236783, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532766

ABSTRACT

Background: Bone staples have been shown previously to be a viable modality for cortical tendon graft fixation in ligament knee surgery. However, soft tissue reactions have been reported, making implant removal necessary. Magnesium alloys are a promising material for biodegradable orthopaedic implants, with mechanical properties closely resembling those of human bone. Purpose: To compare the primary stability of a biodegradable bone staple prototype made from magnesium to bone staples made from metal in the cortical fixation of tendon grafts during knee surgery. Study Design: Controlled laboratory study. Methods: Primary stability of peripheral tendon graft fixation was assessed in a porcine model of medial collateral ligament reconstruction. Two commercially available metal bone staples (Richards fixation staple with spikes [Me1] and spiked ligament staple [Me2]) were compared with a magnesium bone staple prototype for soft tissue fixation. Primary stability was assessed using a uniaxial materials testing machine. Cyclic loading at 50 and 100 N was applied for 500 cycles each, followed by load-to-failure testing. Results: After 500 cycles at 50 N, elongation was 1.5 ± 0.5 mm in the Me1 group, 1.9 ± 0.5 mm in the Me2 group, and 1.8 ± 0.4 mm in the magnesium group. After 1000 cycles of loading (500 cycles at 50 N and 500 at 100 N), elongation was 3.6 ± 0.9 mm in the Me1 group, 3.5 ± 0.6 mm in the Me2 group, and 4.1 ± 1.0 mm in the magnesium group. No significant differences regarding elongation were found between the groups. Load to failure was 352 ± 115 N in the Me1 group, 373 ± 77 N in the Me2 group, and 449 ± 92 N in the magnesium group, with no significant difference between the groups. Conclusion: In this study, the magnesium bone staples provided appropriate time-zero biomechanical primary stability in comparison with metal bone staples and may therefore be a feasible alternative for cortical fixation of tendon grafts in knee surgery. Clinical Relevance: The biodegradability of magnesium bone staples would eliminate the need for later implant removal.

8.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 978-986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431913

ABSTRACT

PURPOSE: This study aimed to investigate the length change patterns of the native deep medial collateral ligament (dMCL) and potential anteromedial reconstructions (AMs) that might be added to a reconstruction of the superficial MCL (sMCL) to better understand the control of anteromedial rotatory instability (AMRI). METHODS: Insertion points of the dMCL and potential AM reconstructions were marked with pins (tibial) and eyelets (femoral) in 11 cadaveric knee specimens. Length changes between the pins and eyelets were then tested using threads in a validated kinematics rig with muscle loading of the quadriceps and iliotibial tract. Between 0° and 100° knee flexion, length change pattern of the anterior, middle and posterior part of the dMCL and simulated AM reconstructions were analysed using a rotary encoder. Isometry was tested using the total strain range (TSR). RESULTS: The tibiofemoral distance of the anterior dMCL part lengthened with flexion (+12.7% at 100°), whereas the posterior part slackened with flexion (-12.9% at 100°). The middle part behaved almost isometrically (maximum length: +2.8% at 100°). Depending on the femoral position within the sMCL footprint, AM reconstructions resulted in an increase in length as the knee flexed when a more centred position was used, irrespective of the tibial attachment position. Femoral positioning in the posterior aspect of the sMCL footprint exhibited <4% length change and was slightly less tight in flexion (min TSR = 3.6 ± 1.5%), irrespective of the tibial attachment position. CONCLUSION: The length change behaviour of potential AM reconstructions in a functionally intact knee is mainly influenced by the position of the femoral attachment, with different tibial attachments having a minimal effect on length change. Surgeons performing AM reconstructions to control AMRI would be advised to choose a femoral graft position in the posterior part of the native sMCL attachment to optimise graft length change behaviour. Given the high frequency of MCL injuries, sufficient restoration of AMRI is essential in isolated and combined ligamentous knee injuries. LEVEL OF EVIDENCE: There is no level of evidence as this study was an experimental laboratory study.


Subject(s)
Collateral Ligaments , Knee Injuries , Humans , Knee Joint/surgery , Knee Joint/physiology , Femur/surgery , Tibia/surgery , Biomechanical Phenomena , Range of Motion, Articular/physiology , Cadaver
9.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 864-871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454816

ABSTRACT

PURPOSE: To investigate the forces on a medial collateral ligament (MCL) reconstruction (MCLR) relative to the valgus alignment of the knee. METHODS: Eight fresh-frozen human cadaveric knees were subjected to dynamic valgus loading at 400 N using a custom-made kinematics rig. After resection of the superficial medial collateral ligament, a single-bundle MCLR with a hamstring tendon autograft was performed. A medial opening wedge distal femoral osteotomy was performed and fixed with an external fixator to gradually adjust the alignment in 5° increments from 0° to 10° valgus. For each degree of valgus deformity, the resulting forces acting on the MCLR were measured through a force sensor and captured in 15° increments from 0° to 60° of knee flexion. RESULTS: Irrespective of the degree of knee flexion, increasing valgus malalignment resulted in significantly increased forces acting on the MCLR compared to neutral alignment (p < 0.05). Dynamic loading at 5° valgus resulted in increased forces on the MCLR at all flexion angles ranging between 16.2 N and 18.5 N (p < 0.05 from 0° to 30°; p < 0.01 from 45° to 60°). A 10° valgus malalignment further increased the forces on the MCLR at all flexion angles ranging between 29.4 N and 40.0 N (p < 0.01 from 0° to 45°, p < 0.05 at 60°). CONCLUSION: Valgus malalignment of the knee caused increased forces acting on the reconstructed MCL. In cases of chronic medial instabilities accompanied by a valgus deformity ≥ 5°, a realigning osteotomy should be considered concomitantly to the MCLR to protect the graft and potentially reduce graft failures. LEVEL OF EVIDENCE: Level III.


Subject(s)
Collateral Ligaments , Hamstring Tendons , Humans , Cadaver , Knee Joint/surgery , Biomechanical Phenomena , Collateral Ligaments/surgery
10.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 881-888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38469949

ABSTRACT

PURPOSE: The purpose of this study was to retrospectively analyse the pattern of injury to the medial knee structures in anterior cruciate ligament (ACL) injured patients. It was hypothesised that anteromedial injuries would be more common than posteromedial lesions. METHODS: One hundred and twenty subjects aged 18-25 years with a primary ACL injury were included. Patients were excluded if the time between injury and magnetic resonance imaging (MRI) was more than 28 days or if a knee dislocation or fracture was present. The MRIs were analysed with particular emphasis on injuries to the medial knee structures, menisci and bone bruise patterns. Injuries to the ligaments and anteromedial retinaculum (AMR) were graded according to severity, ranging from periligamentous oedema (grade I), partial fibre disruption of less or more than 50% (grade IIa or IIb) to complete tears (grade III). RESULTS: AMR injury was seen in 87 subjects (72.5%) on the coronal plane and in 88 (73.3%) on the axial plane, with grade III lesions observed in 27 (22.5%) and 29 knees (24.2%). Injuries to the superficial medial collateral ligament (sMCL), deep MCL (dMCL) and posterior oblique ligament (POL) were detected in 60 patients (50%), 93 patients (77.5%) and 38 patients (31.6%). However, grade III injuries to the POL were observed in only seven knees (5.8%). Medial meniscus injuries were associated with lesions of the sMCL and AMR (p < 0.05), while lateral meniscus injuries were significantly more common in patients with dMCL rupture (p < 0.05). CONCLUSION: Data from this study suggest that injuries to the AMR are much more common than posteromedial lesions in subjects with ACL injuries. LEVEL OF EVIDENCE: Level IV.


Subject(s)
Anterior Cruciate Ligament Injuries , Knee Injuries , Adult , Humans , Adolescent , Young Adult , Anterior Cruciate Ligament , Retrospective Studies , Knee Injuries/etiology , Knee Injuries/complications , Knee Joint/diagnostic imaging , Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/epidemiology , Rupture/complications
11.
Chirurgie (Heidelb) ; 95(6): 466-472, 2024 Jun.
Article in German | MEDLINE | ID: mdl-38498122

ABSTRACT

BACKGROUND: Structured competency-based training is one of the most frequently articulated wishes of residents. METHODS: A survey of 19 residents was conducted regarding their satisfaction with the resident education at a level 1 trauma center. In this article the development of a revised competency-based education concept was carried out. RESULTS: The survey reflected uncertainty as to whether the current structures could meet the requirements of the residency regulations. The improved competency-based education concept consists of clinical mentoring, competency-based catalogs of learning objectives, regular theoretical and practical workshops as well as regular and structured staff evaluations. CONCLUSION: The education concept presented reflects the attempt to establish a contemporary surgical training program which will be evaluated as it progresses.


Subject(s)
Competency-Based Education , Education, Medical, Continuing , Internship and Residency , Trauma Centers , Humans , Competency-Based Education/methods , Education, Medical, Continuing/methods , Germany , Surveys and Questionnaires , Clinical Competence/standards , Male , Female , Traumatology/education , Personal Satisfaction , Attitude of Health Personnel , Adult
12.
J Bone Joint Surg Am ; 106(9): 809-816, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38377221

ABSTRACT

BACKGROUND: The current literature lacks recommendations regarding surgical approaches to best visualize and reduce Hoffa fractures. The aims of this study were to (1) define surgical corridors to the posterior portions of the lateral and medial femoral condyles and (2) compare the articular surface areas visible with different approaches. METHODS: Eight fresh-frozen human cadaveric knees (6 male and 2 female donors; mean age, 68.2 ± 10.2 years) underwent dissection simulating 6 surgical approaches to the distal femur. The visible articular surface areas for each approach were marked using an electrocautery device and subsequently analyzed using image-processing software. The labeled areas of each femoral condyle were statistically compared. RESULTS: At 30° of flexion, visualization of the posterior portions of the lateral and medial femoral condyles was not possible by lateral and medial parapatellar approaches, as only the anterior 29.4% ± 2.1% of the lateral femoral condyle and 25.6% ± 2.8% of the medial condyle were exposed. Visualization of the lateral femoral condyle was limited by the posterolateral ligamentous structures, hence a posterolateral approach only exposed its central (13.1% ± 1.3%) and posterior (12.4% ± 1.1%) portions. Posterolateral extension by an osteotomy of the lateral femoral epicondyle significantly improved the exposure to 53.4% ± 2.7% and, when combined with a Gerdy's tubercle osteotomy, to 70.9% ± 4.1% (p < 0.001). For the posteromedial approach, an arthrotomy between the anteromedial retinaculum and the superficial medial collateral ligament, and one between the posterior oblique ligament and the medial gastrocnemius tendon, allowed visualization of the central (13.5% ± 2.2%) and the posterior (14.6% ± 2.3%) portions of the medial femoral condyle, while a medial femoral epicondyle osteotomy significantly improved visualization to 66.1% ± 5.5% (p < 0.001). CONCLUSIONS: Visualization of the posterior portions of the femoral condyles is limited by the specific anatomy of each surgical corridor. Extension by osteotomy of the femoral epicondyles and Gerdy's tubercle significantly improved articular surface exposure of the femoral condyles. CLINICAL RELEVANCE: Knowledge of the surgical approach-specific visualization of the articular surface of the femoral condyles might be helpful to properly reduce small Hoffa fragments.


Subject(s)
Cadaver , Femoral Fractures , Humans , Female , Male , Aged , Femoral Fractures/surgery , Knee Joint/surgery , Middle Aged , Femur/surgery , Femur/anatomy & histology , Aged, 80 and over , Dissection/methods
13.
Am J Sports Med ; 52(4): 928-935, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38343294

ABSTRACT

BACKGROUND: Conflicting evidence has been reported regarding the biomechanical relevance of ramp lesions (RLs) on knee kinematics. Furthermore, the influence of the defect size of the RLs on anterior tibial translation (ATT) and external rotation (ER) is currently unknown. PURPOSE: To evaluate the influence of RL defect size on knee kinematics in anterior cruciate ligament (ACL) deficiency and after simulated ACL reconstruction (sACLR). STUDY DESIGN: Controlled laboratory study. METHODS: Eight cadaveric knee specimens were tested in a 6 degrees of freedom robotic test setup. Force-controlled clinical laxity tests were performed with 200 N of axial compression in 0°, 30°, 60°, and 90° of flexion: 5 N·m internal rotation (IR)/ER torque, 134 N ATT force, and an anteromedial drawer test consisting of 134 N ATT force under 5 N·m ER torque. After determining the native knee kinematics, the ACL was cut at the tibial insertion, followed by a transosseous refixation to simulate a surgical repair or reconstruction (simulated ACL reconstruction; sACLR). An RL was sequentially created with a length of 1, 2, and 3 cm. Each state of the RL was evaluated in the ACL-deficient state and after sACLR. RESULTS: In the ACL-deficient state, only an RL of 3 cm length resulted in a significant increase of ATT in 30° of flexion (mean difference 0.73 mm; 95% CI, 0.36-1.1 mm). After sACLR, an RL had no significant effect. When looking at ER, an RL significantly increased ER in full extension in the ACL-deficient state in 2 cm (mean difference 0.9°; 95% CI, 0.08°-1.74°) and 3 cm length (mean difference 1.9°; 95% CI, 0.57-3.25). Furthermore, a 3-cm RL significantly increased IR in 0° of flexion in the ACL-deficient state (mean difference 1.9°; 95% CI, 0.2°-3.6°). No effect of ramp lesions on rotation was found after sACLR. CONCLUSION: RLs result in a small increase in ATT, ER, and IR in ACL-deficient knees at early flexion angles, but not after sACLR. CLINICAL RELEVANCE: Small RLs did not change time-zero knee kinematics and may, therefore, be left untreated, especially when the ACL is reconstructed.


Subject(s)
Anterior Cruciate Ligament Injuries , Joint Instability , Robotic Surgical Procedures , Humans , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Cadaver , Joint Instability/surgery , Knee Joint/surgery , Range of Motion, Articular , Biomechanical Phenomena
14.
J Clin Med ; 13(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38398383

ABSTRACT

(1) Background: High-energy injuries of the pelvic ring are rare. The wide application of iliosacral screw fixation of the posterior pelvic ring is relatively new. The aim of the present study was to evaluate the long-term quality of life. (2) Methods: All patients treated with an iliosacral screw for a posterior pelvic ring stabilization after high-energy trauma at a level 1 trauma center between 2005 and 2015 were included. Pelvic ring injuries were classified according to the Tile classification adapted by AO/ASIF. The clinical evaluation included the patient-oriented questionnaires surveys of the Majeed Score, Iowa Pelvic Score (IPS), Work Ability Index (WAI), SF-36, EQ5D-5L. (3) Results: A total of 84 patients were included with a median follow-up of 130.1 months (IQR 95.0-162.0 months). The median ISS was 22.5 (IQR 16.0-29.0), mean Majeed Score 83.32 (SD ± 19.26), IPS 77.88 (SD ± 13.96), WAI 32.71 (SD ± 11.31), SF-36 PF 71.25 (SD ± 29.61) and EQ5D-5L 0.83 (SD ± 0.21). There was a notably difference between uni- and bilateral pelvic fractures (p = 0.033) as well as a correlation with the ISS (p = 0.043) with inferior functional outcome measured by IPS. (4) Conclusions: Long-term follow-up of iliosacral screw fixation of unstable pelvic ring fractures showed a good quality of life and functional outcome with equal EQ5D-5L results and inferior SF-36 physical functioning compared to the German population.

15.
Arthroscopy ; 40(4): 1059-1065, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37625659

ABSTRACT

PURPOSE: To investigate the stabilizing role of the long head of the biceps (LHB) for different simulated rotator cuff (RC) tears. METHODS: Human cadaveric specimens (n = 8) were fixed in a robotic-based experimental setup with a static loading of the RC, deltoid, and the LHB. RC tears were simulated by unloading of the corresponding muscles. A throwing motion and an anterior load-and-shift test were simulated under different RC conditions by unloading the supraspinatus (SS), subscapularis (SSc), infraspinatus (IS), and combinations (SS + SSc, SS + IS, SS + SSc + IS). The LHB was tested in 3 conditions: unloaded, loaded, and tenotomy. Translation of the humeral head and anterior forces depending on loading of the RC and the LHB was captured. RESULTS: Loading of LHB produced no significant changes in anterior force or glenohumeral translation for the intact RC or a simulated SS tear. However, if SSc or IS were unloaded, LHB loading resulted in a significant increase of anterior force ranging from 3.9 N (P = .013, SSc unloaded) to 5.2 N (P = .001, simulated massive tear) and glenohumeral translation ranging from 2.4 mm (P = .0078, SSc unloaded) to 7.4 mm (P = .0078, simulated massive tear) compared to the unloaded LHB. Tenotomy of the LHB led to a significant increase in glenohumeral translation compared to the unloaded LHB in case of combined SS + SSc (2.6 mm, P = .0391) and simulated massive tears of all SS + SSc + IS (4.6 mm, P = .0078). Highest translation was observed in simulated massive tears between loaded LHB and tenotomy (8.1 mm, P = .0078). CONCLUSIONS: Once SSc or IS is simulated to be torn, the LHB has a stabilizing effect for the glenohumeral joint and counteracts humeral translation. With a fully loaded RC, LHB loading has no influence. CLINICAL RELEVANCE: With an intact RC, the condition of the LHB showed no biomechanical effect on the joint stability. Therefore, from a biomechanical point of view, the LHB could be removed from the joint when the RC is intact or reconstructable. However, since there was a positive effect even of the unloaded LHB in this study when SSc or IS is deficient, techniques with preservation of the supraglenoid LHB origin may be of benefit in such cases.


Subject(s)
Lacerations , Rotator Cuff Injuries , Shoulder Joint , Humans , Rotator Cuff/surgery , Rotator Cuff/physiology , Shoulder Joint/surgery , Shoulder Joint/physiology , Rotator Cuff Injuries/surgery , Muscle, Skeletal , Humeral Head/surgery
16.
Eur J Orthop Surg Traumatol ; 34(1): 113-117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37351646

ABSTRACT

PURPOSE: To determine the frequency and possible reasons of medial migration with penetration into the acetabulum (MMPA) of the helical blade when using the Trochanteric Fixation Nail Advanced (TFNA) is used for treatment of pertrochanteric fractures. METHODS: All patients with pertrochanteric femoral fracture, treated by intramedullary femoral nailing with the TFNA, were retrospectively reviewed for MMPA of the helical blade. Epidemiological parameters, additional procedures, distance of medial migration, time from primary operation to revision as well as type of revision were assessed. RESULTS: 4 of 153 patients treated with the TFNA developed an MMPA of the helical blade (risk = 2.6%), with a mean medial migration of the blade of 11.6 mm (SD 8.8). The mean time from initial operation to revision surgery was 70 days (SD 30). All patients were revised by conversion to cemented total hip arthroplasty. CONCLUSION: MMPA of the helical blade is a rare but potentially hazardous complication of femoral nailing with the TFNA femoral nail, resulting in the necessity for revision surgery and total hip arthroplasty.


Subject(s)
Femoral Fractures , Fracture Fixation, Intramedullary , Hip Fractures , Humans , Acetabulum/surgery , Bone Nails/adverse effects , Hip Fractures/surgery , Hip Fractures/etiology , Retrospective Studies , Femoral Fractures/surgery , Fracture Fixation, Intramedullary/adverse effects
17.
Unfallchirurgie (Heidelb) ; 127(1): 18-26, 2024 Jan.
Article in German | MEDLINE | ID: mdl-37848564

ABSTRACT

Different medial structures are responsible for restraining valgus rotation, external rotation, and anteromedial rotation. When injured this can result in various degrees of isolated and combined instabilities. In contrast to earlier speculation, the posterior oblique ligament (POL) is no longer considered to be the main stabilizer of anteromedial rotatory instability (AMRI). Acute proximal medial ruptures are typically managed conservatively with very good clinical results. Conversely, acute distal ruptures usually require a surgical intervention. Chronic instabilities mostly occur in combination with instabilities of the anterior cruciate ligament (ACL). The clinical examination is a particularly important component in these cases to determine the indications for surgery for an additional medial reconstruction. In cases of severe medial and anteromedial instabilities, surgical treatment should be considered. Biomechanically, a combined medial and anteromedial reconstruction appears to be superior to other reconstruction methods; however, there is currently a lack of clinical studies to confirm this biomechanical advantage.


Subject(s)
Anterior Cruciate Ligament Injuries , Joint Instability , Humans , Anterior Cruciate Ligament Injuries/surgery , Range of Motion, Articular , Joint Instability/etiology , Biomechanical Phenomena , Knee Joint/diagnostic imaging , Rupture
18.
Am J Sports Med ; 51(14): 3732-3741, 2023 12.
Article in English | MEDLINE | ID: mdl-37936394

ABSTRACT

BACKGROUND: Hinge fractures are considered risk factors for delayed or nonunion of the osteotomy gap in distal femoral osteotomies (DFOs). Limited evidence exists regarding the treatment of hinge fractures after DFO, which could improve stability and thus bone healing. PURPOSE: To (1) examine the effect of hinge fractures on the biomechanical properties of the bone-implant construct, (2) evaluate the biomechanical advantages of an additional fixation of a hinge fracture, and (3) test the biomechanical properties of different types of varisation DFOs. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 32 fresh-frozen human distal femora equally underwent medial closing wedge DFO or lateral opening wedge DFO using a unilateral locking compression plate. The following conditions were serially tested: (1) preserved hinge; (2) hinge fracture along the osteotomy plane; (3) screw fixation of the hinge fracture; and (4) locking T-plate fixation of the hinge fracture. Using a servo-hydraulic materials testing machine, we subjected each construct to 15 cycles of axial compression (400 N; 20 N/s) and internal and external rotational loads (10 N·m; 0.5 N·m/s) to evaluate the stiffness. The axial and torsional hinge displacement was recorded using a 3-dimensional optical measuring system. Repeated-measures 1-way analysis of variance and post hoc Bonferroni correction were used for multiple comparisons. Statistical significance was set at P < .05. RESULTS: Independent from the type of osteotomy, a fractured hinge significantly (P < .001) increased rotational displacement and reduced stiffness of the bone-implant construct, resulting in ≥1.92 mm increased displacement and ≥70% reduced stiffness in each rotational direction, while the axial stiffness remained unchanged. For both procedures, neither a screw nor a plate could restore intact rotational stiffness (P < .01), while only the plate was able to restore intact rotational displacement. However, the plate always performed better compared with the screw, with significantly higher and lower values for stiffness (+38% to +53%; P < .05) and displacement (-55% to -72%; P < .01), respectively, in ≥1 rotational direction. At the same time, the type of osteotomy did not significantly affect axial and torsional stability. CONCLUSION: Hinge fractures after medial closing wedge DFO and lateral opening wedge DFO caused decreased bone-implant construct rotational stiffness and increased fracture-site displacement. In contrast, the axial stiffness remained unchanged in the cadaveric model. CLINICAL RELEVANCE: When considering an osteosynthesis of a hinge fracture in a DFO, an additional plate fixation was the construct with the highest stiffness and least displacement, which could restore intact hinge rotational displacement.


Subject(s)
Femoral Fractures , Fractures, Bone , Humans , Bone Plates , Osteotomy/methods , Fracture Fixation, Internal/methods , Femur/surgery , Biomechanical Phenomena , Femoral Fractures/surgery
19.
J Exp Orthop ; 10(1): 103, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37815666

ABSTRACT

PURPOSE: Biodegradable interference screws (IFS) can be manufactured from different biomaterials. Magnesium was previously shown to possess osteoinductive properties, making it a promising material to promote graft-bone healing in anterior cruciate ligament reconstruction (ACLR). The purpose of this study was to compare IFS made from magnesium to a contemporary biocomposite IFS. METHODS: In a porcine model of ACL reconstruction, deep porcine flexor tendons were trimmed to a diameter of 8 mm, sutured in Krackow technique, and fixed with either 8 × 30 mm biocomposite IFS (Bc-IFS) or 8 × 30 mm magnesium IFS (Mg-IFS) in an 8 mm diameter bone tunnel in porcine tibiae. Cyclic loading for 1000 cycles from 0 to 250 N was applied, followed by load to failure testing. Elongation, load to failure and stiffness of the tested constructs was determined. RESULTS: After 1000 cycles at 250 N, elongation was 4.8 mm ± 1.5 in the Bc-IFS group, and 4.9 mm ± 1.5 in the Mg-IFS group. Load to failure was 649.5 N ± 174.3 in the Bc-IFS group, and 683.8 N ± 116.5 in the Mg-IFS group. Stiffness was 125.3 N/mm ± 21.9 in the Bc-IFS group, and 122.5 N/mm ± 20.3 in the Mg-IFS group. No significant differences regarding elongation, load to failure and stiffness between Bc-IFS and Mg-IFS were observed. CONCLUSION: Magnesium IFS show comparable biomechanical primary stability in comparison to biocomposite IFS and may therefore be an alternative to contemporary biodegradable IFS.

20.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37893445

ABSTRACT

Background and Objectives: The proximal humeral fracture (PHF) is one of the most common fractures in elderly patients. A PHF might influence the quality of life (QoL) on several different levels, especially in elderly patients, but it is unclear which treatment option results in a better QoL outcome. Therefore, we aimed to systematically review the current literature for studies that have analyzed the QoL and pain of elderly patients treated either surgically or non-operatively for PHF. Materials and Methods: A comprehensive search of the literature was performed in the PubMed database from January to April 2023. Studies describing the QoL or the level of pain of patients older than 60 years with the EuroQoL-5 Dimension (EQ-5D) score or the visual analogue scale (VAS) after the treatment of PHF, either non-operatively (non-OP), with open-reduction and internal fixation using a locking plate (LPF), or with reverse total shoulder arthroplasty (RTSA) were included. Twelve studies were analyzed descriptively and the individual risk of bias was assessed using the ROB2 and ROBINS-I tools. Results: A total of 12 studies with 712 patients at baseline were included (78% female sex, mean age 75.2 years). The reported VAS scores at 12-month follow-up (FU) ranged from 0.7 to 2.5. The calculated overall mean VAS score across all studies showed a decreasing tendency for all treatments, with an increasing FU time up to 12 months after PHF. None of the studies reported any significant differences of the EQ-5D across the groups. The overall calculated EQ-5D indices showed an increasing trend after 6-8 weeks FU, but did not differ significantly between the three treatments. Conclusions: In conclusion, the current literature suggests that there are no clinically important differences between the QoL or pain in elderly patients with PHF after non-operative treatment or surgical treatment with LPF or RTSA. However, the number of studies and level of evidence is rather low and further trials are urgently needed.


Subject(s)
Arthroplasty, Replacement, Shoulder , Shoulder Fractures , Humans , Female , Aged , Male , Treatment Outcome , Quality of Life , Arthroplasty, Replacement, Shoulder/methods , Fracture Fixation, Internal/adverse effects , Pain/etiology , Shoulder Fractures/complications , Shoulder Fractures/surgery , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...