Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Trace Elem Med Biol ; 78: 127180, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201367

ABSTRACT

BACKGROUND: Dyshomeostasis of copper (Cu) accompanied by Cu accumulation in certain brain areas has been associated with neurodegenerative diseases. One proposed toxic mode of action following Cu overload is oxidative stress associated with neuronal damage, whereas Selenium (Se) is assumed to play here a protective role. This study investigates the relationship between adequate Se supplementation and the respective consequences for Cu transfer into the brain applying an in vitro model of the blood-brain barrier (BBB). METHODS: Primary porcine brain capillary endothelial cells (PBCECs) seeded on Transwell® inserts were supplemented with selenite starting at cultivation in both compartments. After apical application of 15 or 50 µM CuSO4, transfer of Cu to the basolateral compartment, the brain facing side, was assessed by ICP-MS/MS. RESULTS: Incubation with Cu did not negatively affect the barrier properties, whereas Se had a positive effect. Additionally, Se status improved after selenite supplementation. Transfer of Cu was not affected by selenite supplementation. Under Se-deficient conditions, Cu permeability coefficients decreased with increasing Cu concentrations. CONCLUSION: The results of this study do not indicate that under suboptimal Se supplementation more Cu transfers across the BBB to the brain.


Subject(s)
Selenium , Animals , Swine , Selenium/pharmacology , Blood-Brain Barrier , Endothelial Cells , Tandem Mass Spectrometry , Dietary Supplements , Brain , Selenious Acid
2.
J Trace Elem Med Biol ; 78: 127149, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36948045

ABSTRACT

BACKGROUND: Both essential trace elements selenium (Se) and copper (Cu) play an important role in maintaining brain function. Homeostasis of Cu, which is tightly regulated under physiological conditions, seems to be disturbed in Alzheimer´s (AD) and Parkinson´s disease (PD) patients. Excess Cu promotes the formation of oxidative stress, which is thought to be a major cause for development and progression of neurological diseases (NDs). Most selenoproteins exhibit antioxidative properties and may counteract oxidative stress. However, expression of selenoproteins is altered under conditions of Se deficiency. Serum Se levels are decreased in AD and PD patients suggesting Se as an important factor in the development and progression of NDs. The aim of this study was to elucidate the interactions between Cu and Se in human brain cells particularly with respect to Se homeostasis. METHODS: Firstly, modulation of Se status by selenite or SeMet were assessed in human astrocytes and human differentiated neurons. Therefore, cellular total Se content, intra- and extracellular selenoprotein P (SELENOP) content, and glutathione peroxidase (GPX) activity were quantified. Secondly, to investigate the impact of Cu on these markers, cells were exposed to copper(II)sulphate (CuSO4) for 48 h. In addition, putative protective effects of Se on Cu-induced toxicity, as measured by cell viability, DNA damage, and neurodegeneration were investigated. RESULTS: Modulation of cellular Se status was strongly dependent on Se species. In detail, SeMet increased total cellular Se and SELENOP content, whereas selenite led to increased GPX activity and SELENOP excretion. Cu treatment resulted in 133-fold higher cellular Cu concentration with a concomitant decrease in Se content. Additionally, SELENOP excretion was suppressed in both cell lines, while GPX activity was diminished only in astrocytes. These effects of Cu could be partially prevented by the addition of Se depending on the cell line and Se species used. While Cu-induced oxidative DNA damage could not be prevented by addition of Se regardless of chemical species, SeMet protected against neurite network degeneration triggered by Cu. CONCLUSION: Cu appears to negatively affect Se status in astrocytes and neurons. Especially with regard to an altered homeostasis of those trace elements during aging, this interaction is of high physiological relevance. Increasing Cu concentrations associated with decreased selenoprotein expression or functionality might be a promoting factor for the development of NDs.


Subject(s)
Selenium , Trace Elements , Humans , Copper/pharmacology , Selenoproteins/genetics , Selenoprotein P , Antioxidants , Selenious Acid , Homeostasis , DNA , Glutathione Peroxidase/metabolism
3.
Life Sci Alliance ; 5(3)2022 03.
Article in English | MEDLINE | ID: mdl-34857647

ABSTRACT

In Wilson disease, excessive copper accumulates in patients' livers and may, upon serum leakage, severely affect the brain according to current viewpoints. Present remedies aim at avoiding copper toxicity by chelation, for example, by D-penicillamine (DPA) or bis-choline tetrathiomolybdate (ALXN1840), the latter with a very high copper affinity. Hence, ALXN1840 may potentially avoid neurological deterioration that frequently occurs upon DPA treatment. As the etiology of such worsening is unclear, we reasoned that copper loosely bound to albumin, that is, mimicking a potential liver copper leakage into blood, may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells. Such blood-brain barrier damage was avoided by ALXN1840, plausibly due to firm protein embedding of the chelator bound copper, but not by DPA. Mitochondrial protection was observed, a prerequisite for blood-brain barrier integrity. Thus, high-affinity copper chelators may minimize such deterioration in the treatment of neurologic Wilson disease.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Copper/metabolism , Molybdenum/pharmacology , Penicillamine/pharmacology , Animals , Biological Transport , Biomarkers , Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Survival , Chelating Agents/pharmacology , Copper/adverse effects , Copper/chemistry , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Mice, Transgenic , Mitochondria/metabolism , Mitochondria/ultrastructure , Models, Molecular , Positron-Emission Tomography , Protein Binding , Rats , Serum Albumin/chemistry , Serum Albumin/metabolism , Structure-Activity Relationship
4.
Metallomics ; 13(1)2021 01 21.
Article in English | MEDLINE | ID: mdl-33570138

ABSTRACT

The naturally occurring selenoneine (SeN), the selenium analogue of the sulfur-containing antioxidant ergothioneine, can be found in high abundance in several marine fish species. However, data on biological properties of SeN and its relevance for human health are still scarce. This study aims to investigate the transfer and presystemic metabolism of SeN in a well-established in vitro model of the blood-brain barrier (BBB). Therefore, SeN and the reference Se species selenite and Se-methylselenocysteine (MeSeCys) were applied to primary porcine brain capillary endothelial cells (PBCECs). Se content of culture media and cell lysates was measured via ICP-MS/MS. Speciation analysis was conducted by HPLC-ICP-MS. Barrier integrity was shown to be unaffected during transfer experiments. SeN demonstrated the lowest transfer rates and permeability coefficient (6.7 × 10-7 cm s-1) in comparison to selenite and MeSeCys. No side-directed accumulation was observed after both-sided application of SeN. However, concentration-dependent transfer of SeN indicated possible presence of transporters on both sides of the barrier. Speciation analysis demonstrated no methylation of SeN by the PBCECs. Several derivatives of SeN detected in the media of the BBB model were also found in cell-free media containing SeN and hence not considered to be true metabolites of the PBCECs. In concluding, SeN is likely to have a slow transfer rate to the brain and not being metabolized by the brain endothelial cells. Since this study demonstrates that SeN may reach the brain tissue, further studies are needed to investigate possible health-promoting effects of SeN in humans.


Subject(s)
Blood-Brain Barrier , Histidine/analogs & derivatives , Models, Biological , Organoselenium Compounds/pharmacokinetics , Animals , Brain/blood supply , Capillaries/cytology , Capillaries/metabolism , Cells, Cultured , Chromatography, High Pressure Liquid/methods , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Histidine/pharmacokinetics , In Vitro Techniques , Swine
5.
Redox Biol ; 41: 101877, 2021 05.
Article in English | MEDLINE | ID: mdl-33607499

ABSTRACT

Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability.


Subject(s)
Selenium , Trace Elements , Copper , Genomic Instability , Humans , Neurons , Zinc
6.
J Trace Elem Med Biol ; 65: 126711, 2021 May.
Article in English | MEDLINE | ID: mdl-33486291

ABSTRACT

BACKGROUND: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer's disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. METHODS: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. RESULTS: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 µM) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. CONCLUSION: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases.


Subject(s)
Astrocytes/drug effects , Copper Sulfate/pharmacology , Astrocytes/metabolism , Biomarkers/metabolism , Cell Survival/drug effects , Cells, Cultured , Copper Sulfate/metabolism , Dose-Response Relationship, Drug , Humans , Oxidative Stress/drug effects
7.
Mol Nutr Food Res ; 63(9): e1801304, 2019 05.
Article in English | MEDLINE | ID: mdl-30815971

ABSTRACT

SCOPE: Small selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. METHODS AND RESULTS: In the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. CONCLUSION: Se species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.


Subject(s)
Antioxidants/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Selenium Compounds/pharmacology , Selenium/pharmacokinetics , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation/drug effects , Mutation , Selenious Acid/pharmacology , Selenocysteine/analogs & derivatives , Selenocysteine/pharmacology , Selenomethionine/pharmacology , Thioredoxin Reductase 1/genetics , Thioredoxin Reductase 1/metabolism , tert-Butylhydroperoxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...