Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 105(11): 4397-4414, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34037840

ABSTRACT

Folding and processing of proteins in the endoplasmic reticulum (ER) are major impediments in the production and secretion of proteins from Pichia pastoris (Komagataella sp.). Overexpression of recombinant genes can overwhelm the innate secretory machinery of the P. pastoris cell, and incorrectly folded proteins may accumulate inside the ER. To restore proper protein folding, the cell naturally triggers an unfolded protein response (UPR) pathway, which upregulates the expression of genes coding for chaperones and other folding-assisting proteins (e.g., Kar2p, Pdi1, Ero1p) via the transcription activator Hac1p. Unfolded/misfolded proteins that cannot be repaired are degraded via the ER-associated degradation (ERAD) pathway, which decreases productivity. Co-expression of selected UPR genes, along with the recombinant gene of interest, is a common approach to enhance the production of properly folded, secreted proteins. Such an approach, however, is not always successful and sometimes, protein productivity decreases because of an unbalanced UPR. This review summarizes successful chaperone co-expression strategies in P. pastoris that are specifically related to overproduction of foreign proteins and the UPR. In addition, it illustrates possible negative effects on the cell's physiology and productivity resulting from genetic engineering of the UPR pathway. We have focused on Pichia's potential for commercial production of valuable proteins and we aim to optimize molecular designs so that production strains can be tailored to suit a specific heterologous product. KEY POINTS: • Chaperones co-expressed with recombinant genes affect productivity in P. pastoris. • Enhanced UPR may impair strain physiology and promote protein degradation. • Gene copy number of the target gene and the chaperone determine the secretion rate.


Subject(s)
Fungal Proteins , Pichia , Fungal Proteins/genetics , Fungal Proteins/metabolism , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomycetales , Unfolded Protein Response
2.
Front Microbiol ; 12: 640054, 2021.
Article in English | MEDLINE | ID: mdl-33815328

ABSTRACT

Gene expression analysis through reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) depends on correct data normalization by reference genes with stable expression. Although Clostridium beijerinckii NRRL B-598 is a promising Gram-positive bacterium for the industrial production of biobutanol, validated reference genes have not yet been reported. In this study, we selected 160 genes with stable expression based on an RNA sequencing (RNA-Seq) data analysis, and among them, seven genes (zmp, rpoB1, rsmB, greA, rpoB2, topB2, and rimO) were selected for experimental validation by RT-qPCR and gene ontology (GO) enrichment analysis. According to statistical analyses, zmp and greA were the most stable and suitable reference genes for RT-qPCR normalization. Furthermore, our methodology can be useful for selection of the reference genes in other strains of C. beijerinckii and it also suggests that the RNA-Seq data can be used for the initial selection of novel reference genes, however, their validation is required.

3.
Appl Microbiol Biotechnol ; 105(2): 877-889, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33409609

ABSTRACT

Pumping toxic substances through a cytoplasmic membrane by protein transporters known as efflux pumps represents one bacterial mechanism involved in the stress response to the presence of toxic compounds. The active efflux might also take part in exporting low-molecular-weight alcohols produced by intrinsic cell metabolism; in the case of solventogenic clostridia, predominantly acetone, butanol and ethanol (ABE). However, little is known about this active efflux, even though some evidence exists that membrane pumps might be involved in solvent tolerance. In this study, we investigated changes in overall active efflux during ABE fermentation, employing a flow cytometric protocol adjusted for Clostridia and using ethidium bromide (EB) as a fluorescence marker for quantification of direct efflux. A fluctuation in efflux during the course of standard ABE fermentation was observed, with a maximum reached during late acidogenesis, a high efflux rate during early and mid-solventogenesis and an apparent decrease in EB efflux rate in late solventogenesis. The fluctuation in efflux activity was in accordance with transcriptomic data obtained for various membrane exporters in a former study. Surprisingly, under altered cultivation conditions, when solvent production was attenuated, and extended acidogenesis was promoted, stable low efflux activity was reached after an initial peak that appeared in the stage comparable to standard ABE fermentation. This study confirmed that efflux pump activity is not constant during ABE fermentation and suggests that undisturbed solvent production might be a trigger for activation of pumps involved in solvent efflux. KEY POINTS: • Flow cytometric assay for efflux quantification in Clostridia was established. • Efflux rate peaked in late acidogenesis and in early solventogenesis. • Impaired solventogenesis led to an overall decrease in efflux.


Subject(s)
Clostridium beijerinckii , Acetone , Butanols , Clostridium , Ethanol , Fermentation
4.
Appl Microbiol Biotechnol ; 104(13): 5787-5800, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32424437

ABSTRACT

To take full advantage of recombinant Pichia pastoris (Komagataella phaffii) as a production system for heterologous proteins, the complex protein secretory process should be understood and optimised by circumventing bottlenecks. Typically, little or no attention has been paid to the fate of newly synthesised protein inside the cell, or its passage through the secretory pathway, and only the secreted product is measured. However, the system's productivity (i.e. specific production rate qp), includes productivity of secreted (qp,extra) plus intracellularly accumulated (qp,intra) protein. In bioreactor cultivations with P. pastoris producing penicillin G acylase, we studied the dynamics of product formation, i.e. both the specific product secretion (qp,extra) and product retention (qp,intra) as functions of time, as well as the kinetics, i.e. productivity in relation to specific growth rate (µ). Within the time course, we distinguished (I) an initial phase with constant productivities, where the majority of product accumulated inside the cells, and qp,extra, which depended on µ in a bell-shaped manner; (II) a transition phase, in which intracellular product accumulation reached a maximum and productivities (intracellular, extracellular, overall) were changing; (III) a new phase with constant productivities, where secretion prevailed over intracellular accumulation, qp,extra was linearly related to µ and was up to three times higher than in initial phase (I), while qp,intra decreased 4-6-fold. We show that stress caused by heterologous protein production induces cellular imbalance leading to a secretory bottleneck that ultimately reaches equilibrium. This understanding may help to develop cultivation strategies for improving protein secretion from P. pastoris.Key Points• A novel concept for industrial bioprocess development.• A Relationship between biomass growth and product formation in P. pastoris.• A Three (3) phases of protein production/secretion controlled by the AOX1-promoter.• A Proof of concept in production of industrially relevant penicillin G acylase.


Subject(s)
Bacterial Proteins/metabolism , Penicillin Amidase/metabolism , Saccharomycetales/metabolism , Bacterial Proteins/genetics , Batch Cell Culture Techniques , Biomass , Bioreactors , Extracellular Space/metabolism , Intracellular Space/metabolism , Kinetics , Models, Theoretical , Penicillin Amidase/genetics , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomycetales/genetics , Saccharomycetales/growth & development
5.
Front Microbiol ; 10: 335, 2019.
Article in English | MEDLINE | ID: mdl-30873140

ABSTRACT

Pichia pastoris (Komagataella sp.) is broadly used for the production of secreted recombinant proteins. Due to the high rate of protein production, incorrectly folded proteins may accumulate in the endoplasmic reticulum (ER). To restore their proper folding, the cell triggers the unfolded protein response (UPR); however, if the proteins cannot be repaired, they are degraded, which impairs process productivity. Moreover, a non-producing/non-secreting subpopulation of cells might occur, which also decreases overall productivity. Therefore, an in depth understanding of intracellular protein fluxes and population heterogeneity is needed to improve productivity. Under industrially relevant cultivation conditions in bioreactors, we cultured P. pastoris strains producing three different recombinant proteins: penicillin G acylase from Escherichia coli (EcPGA), lipase B from Candida antarctica (CaLB) and xylanase A from Thermomyces lanuginosus (TlXynA). Extracellular and intracellular product concentrations were determined, along with flow cytometry-based single-cell measurements of cell viability and the up-regulation of UPR. The cell population was distributed into four clusters, two of which were viable cells with no UPR up-regulation, differing in cell size and complexity. The other two clusters were cells with impaired viability, and cells with up-regulated UPR. Over the time course of cultivation, the distribution of the population into these four clusters changed. After 30 h of production, 60% of the cells producing EcPGA, which accumulated in the cells (50-70% of the product), had up-regulated UPR, but only 13% of the cells had impaired viability. A higher proportion of cells with decreased viability was observed in strains producing CaLB (20%) and TlXynA (27%). The proportion of cells with up-regulated UPR in CaLB-producing (35%) and TlXynA-producing (30%) strains was lower in comparison to the EcPGA-producing strain, and a smaller proportion of CaLB and TlXynA (<10%) accumulated in the cells. These data provide an insight into the development of heterogeneity in a recombinant P. pastoris population during a biotechnological process. A deeper understanding of the relationship between protein production/secretion and the regulation of the UPR might be utilized in bioprocess control and optimization with respect to secretion and population heterogeneity.

6.
Folia Microbiol (Praha) ; 63(6): 773-787, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29872953

ABSTRACT

Pharmaceutical grade trypsin is in ever-increasing demand for medical and industrial applications. Improving the efficiency of existing biotechnological manufacturing processes is therefore paramount. When produced biotechnologically, trypsinogen-the inactive precursor of trypsin-is advantageous, since active trypsin would impair cell viability. To study factors affecting cell physiology and the production of trypsinogen in fed-batch cultures, we built a fusion protein of porcine trypsinogen and enhanced green fluorescent protein (EGFP) in Pichia pastoris. The experiments were performed with two different pH values (5.0 and 5.9) and two constant specific growth rates (0.02 and 0.04 1/h), maintained using exponential addition of methanol. All the productivity data presented rely on an active determination of trypsin obtained by proteolysis of the trypsinogen produced. The pH of the medium did not affect cell growth, but significantly influenced specific production of trypsinogen: A 1.7-fold higher concentration of trypsinogen was achieved at pH 5.9 (64 mg/L at 0.02 1/h) compared to pH 5.0. EGFP was primarily used to facilitate detection of intracellular protein over the biosynthetic time course. Using flow cytometry with fluorescence detection, cell disruption was avoided, and protein extraction and purification prior to analysis were unnecessary. However, Western blot and SDS-PAGE showed that cleavage of EGFP-trypsinogen fusion protein occurred, probably caused by Pichia-endogenous proteases. The fluorescence analysis did therefore not accurately represent the actual trypsinogen concentration. However, we gained new experimentally-relevant insights, which can be used to avoid misinterpretation of tracking and quantifying as well as online-monitoring of proteins with the frequently used fluorescent tags.


Subject(s)
Pichia/metabolism , Trypsinogen/metabolism , Animals , Culture Media/chemistry , Culture Media/metabolism , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hydrogen-Ion Concentration , Pichia/genetics , Pichia/growth & development , Protein Processing, Post-Translational , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Swine , Trypsinogen/genetics
7.
Biotechnol Adv ; 36(3): 641-665, 2018.
Article in English | MEDLINE | ID: mdl-29331410

ABSTRACT

Within five years, the CRISPR-Cas system has emerged as the dominating tool for genome engineering, while also changing the speed and efficiency of metabolic engineering in conventional (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and non-conventional (Yarrowia lipolytica, Pichia pastoris syn. Komagataella phaffii, Kluyveromyces lactis, Candida albicans and C. glabrata) yeasts. Especially in S. cerevisiae, an extensive toolbox of advanced CRISPR-related applications has been established, including crisprTFs and gene drives. The comparison of innovative CRISPR-Cas expression strategies in yeasts presented here may also serve as guideline to implement and refine CRISPR-Cas systems for highly efficient genome editing in other eukaryotic organisms.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Yeasts/genetics , Chromosomes, Fungal , Cloning, Molecular , Gene Drive Technology , Gene Expression Regulation, Fungal , Metabolic Engineering , Microorganisms, Genetically-Modified , Pichia/genetics , Point Mutation , RNA, Guide, Kinetoplastida , Saccharomyces cerevisiae/genetics , Yarrowia/genetics
8.
J Cell Biochem ; 119(4): 3183-3198, 2018 04.
Article in English | MEDLINE | ID: mdl-29091307

ABSTRACT

Komagataella phaffii (syn. Pichia pastoris) is one of the most commonly used host systems for recombinant protein expression. Achieving targeted genetic modifications had been hindered by low frequencies of homologous recombination (HR). Recently, a CRISPR/Cas9 genome editing system has been implemented for P. pastoris enabling gene knockouts based on indels (insertion, deletions) via non-homologous end joining (NHEJ) at near 100% efficiency. However, specifically integrating homologous donor cassettes via HR for replacement studies had proven difficult resulting at most in ∼20% correct integration using CRISPR/Cas9. Here, we demonstrate the CRISPR/Cas9 mediated integration of markerless donor cassettes at efficiencies approaching 100% using a ku70 deletion strain. The Ku70p is involved in NHEJ repair and lack of the protein appears to favor repair via HR near exclusively. While the absolute number of transformants in the Δku70 strain is reduced, virtually all surviving transformants showed correct integration. In the wildtype strain, markerless donor cassette integration was also improved up to 25-fold by placing an autonomously replicating sequence (ARS) on the donor cassette. Alternative strategies for improving donor cassette integration using a Cas9 nickase variant or reducing off targeting associated toxicity using a high fidelity Cas9 variant were so far not successful in our hands in P. pastoris. Furthermore we provide Cas9/gRNA expression plasmids with a Geneticin resistance marker which proved to be versatile tools for marker recycling. The reported CRSIPR-Cas9 tools can be applied for modifying existing production strains and also pave the way for markerless whole genome modification studies in P. pastoris.


Subject(s)
Gene Knockout Techniques/methods , Pichia/genetics , CRISPR-Cas Systems , DNA End-Joining Repair , Genetic Engineering , Genetic Markers , INDEL Mutation , Pichia/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...