Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37514589

ABSTRACT

Food quality assurance is an important field that directly affects public health. The organoleptic aroma of food is of crucial significance to evaluate and confirm food quality and origin. The volatile organic compound (VOC) emissions (detectable aroma) from foods are unique and provide a basis to predict and evaluate food quality. Soybean and corn oils were added to sesame oil (to simulate adulteration) at four different mixture percentages (25-100%) and then chemically analyzed using an experimental 9-sensor metal oxide semiconducting (MOS) electronic nose (e-nose) and gas chromatography-mass spectroscopy (GC-MS) for comparisons in detecting unadulterated sesame oil controls. GC-MS analysis revealed eleven major VOC components identified within 82-91% of oil samples. Principle component analysis (PCA) and linear detection analysis (LDA) were employed to visualize different levels of adulteration detected by the e-nose. Artificial neural networks (ANNs) and support vector machines (SVMs) were also used for statistical modeling. The sensitivity and specificity obtained for SVM were 0.987 and 0.977, respectively, while these values for the ANN method were 0.949 and 0.953, respectively. E-nose-based technology is a quick and effective method for the detection of sesame oil adulteration due to its simplicity (ease of application), rapid analysis, and accuracy. GC-MS data provided corroborative chemical evidence to show differences in volatile emissions from virgin and adulterated sesame oil samples and the precise VOCs explaining differences in e-nose signature patterns derived from each sample type.


Subject(s)
Sesame Oil , Volatile Organic Compounds , Sesame Oil/analysis , Sesame Oil/chemistry , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Electronic Nose , Neural Networks, Computer
2.
PLoS One ; 18(4): e0284612, 2023.
Article in English | MEDLINE | ID: mdl-37115737

ABSTRACT

The activities of alpha-amylase, beta-amylase, sucrose synthase, and invertase enzymes are under the influence of storage conditions and can affect the structure of starch, as well as the sugar content of potatoes, hence altering their quality. Storage in a warehouse is one of the most common and effective methods of storage to maintain the quality of potatoes after their harvest, while preserving their freshness and sweetness. Smart monitoring and evaluation of the quality of potatoes during the storage period could be an effective approach to improve their freshness. This study is aimed at assessing the changes in the potato quality by an electronic nose (e-nose) in terms of the sugar and carbohydrate contents. Three potato cultivars (Agria, Santé, and Sprite) were analyzed and their quality variations were separately assessed. Quality parameters (i.e. sugar and carbohydrate contents) were evaluated in six 15-day periods. The e-nose data were analyzed by means of chemometric methods, including principal component analysis (PCA), linear data analysis (LDA), support vector machine (SVM), and artificial neural network (ANN). Quadratic discriminant analysis (QDA) and multivariate discrimination analysis (MDA) offer the highest accuracy and sensitivity in the classification of data. The accuracy of all methods was higher than 90%. These results could be applied to present a new approach for the assessment of the quality of stored potatoes.


Subject(s)
Solanum tuberosum , Solanum tuberosum/chemistry , Electronic Nose , Carbohydrates , Sugars , Machine Learning
3.
Molecules ; 27(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684450

ABSTRACT

Five potato varieties were studied using an electronic nose with nine MOS sensors. Parameters measured included carbohydrate content, sugar level, and the toughness of the potatoes. Routine tests were carried out while the signals for each potato were measured, simultaneously, using an electronic nose. The signals obtained indicated the concentration of various chemical components. In addition to support vector machines (SVMs that were used for the classification of the samples, chemometric methods, such as the partial least squares regression (PLSR) method, the principal component regression (PCR) method, and the multiple linear regression (MLR) method, were used to create separate regression models for sugar and carbohydrates. The predictive power of the regression models was characterized by a coefficient of determination (R2), a root-mean-square error of prediction (RMSEP), and offsets. PLSR was able to accurately model the relationship between the smells of different types of potatoes, sugar, and carbohydrates. The highest and lowest accuracy of models for predicting sugar and carbohydrates was related to Marfona potatoes and Sprite cultivar potatoes. In general, in all cultivars, the accuracy in predicting the amount of carbohydrates was somewhat better than the accuracy in predicting the amount of sugar. Moreover, the linear function had 100% accuracy for training and validation in the C-SVM method for classification of five potato groups. The electronic nose could be used as a fast and non-destructive method for detecting different potato varieties. Researchers in the food industry will find this method extremely useful in selecting the desired product and samples.


Subject(s)
Solanum tuberosum , Carbohydrates/analysis , Chemometrics , Least-Squares Analysis , Sugars
4.
Sensors (Basel) ; 21(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502725

ABSTRACT

In response to one of the most important challenges of the century, i.e., the estimation of the food demands of a growing population, advanced technologies have been employed in agriculture. The potato has the main contribution to people's diet worldwide. Therefore, its different aspects are worth studying. The large number of potato varieties, lack of awareness about its new cultivars among farmers to cultivate, time-consuming and inaccurate process of identifying different potato cultivars, and the significance of identifying potato cultivars and other agricultural products (in every food industry process) all necessitate new, fast, and accurate methods. The aim of this study was to use an electronic nose, along with chemometrics methods, including PCA, LDA, and ANN as fast, inexpensive, and non-destructive methods for detecting different potato cultivars. In the present study, nine sensors with the best response to VOCs were adopted. VOCs sensors were used at various VOCs concentrations (1 to 10,000 ppm) to detect different gases. The results showed that a PCA with two main components, PC1 and PC2, described 92% of the total samples' dataset variance. In addition, the accuracy of the LDA and ANN methods were 100 and 96%, respectively.


Subject(s)
Solanum tuberosum , Agriculture , Electronic Nose , Humans , Machine Learning
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 203: 308-314, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-29879646

ABSTRACT

The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R2 = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques can be useful for rapid distinguishing the healthy wheat samples from those damaged by sunn pest in the maintenance and processing centers.


Subject(s)
Pattern Recognition, Automated , Spectroscopy, Near-Infrared/methods , Triticum/chemistry , Algorithms , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...