Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(43): 40375-40386, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37929144

ABSTRACT

Lysophosphatidic acid receptor 1 (LPAR1) is an emerging therapeutic target for numerous human diseases including fibrosis. However, the limited number of available core structures of LPAR1 antagonists has prompted the need for novel chemical templates. In this study, we conducted a high-throughput virtual screening to discover potential new scaffolds. We tested three existing crystal structures alongside an AlphaFold model to evaluate their suitability in structure-based virtual screening, finding that the crystal structures show superior performance compared with the predictive model. Furthermore, we also found that enhancing the precision in the screening process did not necessarily improve the enrichment of hits. From the screening campaign, we identified five structures that were validated using an LPAR1-dependent calcium flux assay. To gain a deeper insight into the protein-ligand interaction, we extensively analyzed the binding modes of these compounds using in silico techniques, laying the groundwork for the discovery of novel LPAR1 antagonists.

2.
Molecules ; 27(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36363979

ABSTRACT

Scientific evidence suggests that quercetin (QUR) has anxiolytic-like effects in experimental animals. However, the mechanism of action responsible for its anxiolytic-like effects is yet to be discovered. The goal of this research is to assess QUR's anxiolytic effects in mouse models to explicate the possible mechanism of action. After acute intraperitoneal (i.p.) treatment with QUR at a dose of 50 mg/kg (i.p.), behavioral models of open-field, hole board, swing box, and light-dark tests were performed. QUR was combined with a GABAergic agonist (diazepam) and/or antagonist (flumazenil) group. Furthermore, in silico analysis was also conducted to observe the interaction of QUR and GABA (α5), GABA (ß1), and GABA (ß2) receptors. In the experimental animal model, QUR had an anxiolytic-like effect. QUR, when combined with diazepam (2 mg/kg, i.p.), drastically potentiated an anxiolytic effect of diazepam. QUR is a more highly competitive ligand for the benzodiazepine recognition site that can displace flumazenil (2.5 mg/kg, i.p.). In all the test models, QUR acted similar to diazepam, with enhanced effects of the standard anxiolytic drug, which were reversed by pre-treatment with flumazenil. QUR showed the best interaction with the GABA (α5) receptor compared to the GABA (ß1) and GABA (ß2) receptors. In conclusion, QUR may exert an anxiolytic-like effect on mice, probably through the GABA-receptor-interacting pathway.


Subject(s)
Anti-Anxiety Agents , Mice , Animals , Anti-Anxiety Agents/pharmacology , Flumazenil/pharmacology , Quercetin/pharmacology , GABA Modulators/pharmacology , Receptors, GABA/metabolism , Receptors, GABA-A/metabolism , Maze Learning , Diazepam/pharmacology , gamma-Aminobutyric Acid/pharmacology , Anxiety/drug therapy , Behavior, Animal
3.
Chin Med ; 17(1): 100, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028892

ABSTRACT

Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.

4.
Biomed Res Int ; 2022: 5886269, 2022.
Article in English | MEDLINE | ID: mdl-35837379

ABSTRACT

Background: Breast cancer is one of the most common types of cancer diagnosed and the second leading cause of death among women. Breast cancer susceptibility proteins of type 1 and 2 are human tumor suppressor genes. Genetic variations/mutations in these two genes lead to overexpression of human breast tumor suppressor genes (e.g., BRCA1, BRCA2), which triggers uncontrolled duplication of cells in humans. In addition, multidrug resistance protein 1 (MDR1), an important cell membrane protein that pumps many foreign substances from cells, is also responsible for developing resistance to cancer chemotherapy. Aim of the Study. The aim of this study was to analyze some natural compounds or their derivatives as part of the development of strong inhibitors for breast cancer. Methodology. Molecular docking studies were performed using compounds known in the literature to be effective against BRCA1 and BRCA2 and MDR1, with positive control being 5-fluorouracil, an antineoplastic drug as a positive control. Results: The binding affinity of the compounds was analyzed, and it was observed that they had a better binding affinity for the target proteins than the standard drug 5-fluorouracil. Among the compounds analyzed, α-hederin, andrographolide, apigenin, asiatic acid, auricular acid, sinularin, curcumin, citrinin, hispolon, nerol, phytol, retinol palmitate, and sclareol showed the best binding affinity energy to the BRCA1, BRCA2, and MDR1 proteins, respectively. Conclusions: α-Hederin, andrographolide, apigenin, asiatic acid, auricular acid, hispolon, sclareol, curcumin, citrinin, and sinularin or their derivatives can be a good source of anticancer agents in breast cancer.


Subject(s)
Breast Neoplasms , Citrinin , Curcumin , Apigenin , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Curcumin/pharmacology , Female , Fluorouracil , Genes, BRCA1 , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Molecular Docking Simulation
5.
Eur J Pharmacol ; 916: 174699, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34919888

ABSTRACT

Cancer, the uncontrolled proliferation and metastasis of abnormal cells, is a major public health issue worldwide. To date, several natural compounds have been reported with their efficacy in the treatment of different types of cancer. Chemotherapeutic agents are used in cancer treatment and prevention, among other aspects. Acteoside is a phenylethanoid glycoside, first isolated from Verbascum sinuatum, which has demonstrated multiple effects, including antioxidant, anti-epileptic, neuroprotective, anti-inflammatory, antifungal, antihypertensive, and anti-leishmanial properties. This review gathered, analyzed, and summarized the literature on acteoside and its anticancer properties. All the available information about this compound and its role in different types of cancer was collected using different scientific search engines, including PubMed, Scopus, Springer Link, Wiley Online, Web of Science, Scifinder, ScienceDirect, and Google Scholar. Acteoside is found in a variety of plants and has been shown to have anticancer activity in many experimental models through oxidative stress, apoptosis, anti-angiogenesis, anti-invasion, anti-metastasis, synergism with other agents, and anti-proliferative effects through modulation of several pathways. In conclusion, acteoside exhibited potent anticancer activity against different cancer cell lines through modulating several cancer signaling pathways in different non- and pre-clinical experimental models and thus could be a strong candidate for further clinical studies.


Subject(s)
Antineoplastic Agents , Phenols , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Glucosides/pharmacology , Glucosides/therapeutic use , Phenols/pharmacology
6.
Chin J Integr Med ; 28(3): 249-256, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34913151

ABSTRACT

OBJECTIVE: To explore potential natural products against severe acute respiratory syndrome coronavirus (SARS-CoV-2) via the study of structural and non-structural proteins of human coronaviruses. METHODS: In this study, we performed an in-silico survey of 25 potential natural compounds acting against SARS-CoV-2. Molecular docking studies were carried out using compounds against 3-chymotrypsin-like protease (3CLPRO), papain-like protease (PLPRO), RNA-dependent RNA polymerase (RdRp), non-structural protein (nsp), human angiotensin converting enzyme 2 receptor (hACE2R), spike glycoprotein (S protein), abelson murine leukemia viral oncogene homolog 1 (ABL1), calcineurin-nuclear factor of activated T-cells (NFAT) and transmembrane protease serine 2. RESULTS: Among the screened compounds, amentoflavone showed the best binding affinity with the 3CLPRO, RdRp, nsp13, nsp15, hACE2R. ABL1 and calcineurin-NFAT; berbamine with hACE2R and ABL1; cepharanthine with nsp10, nsp14, nsp16, S protein and ABL1; glucogallin with nsp15; and papyriflavonol A with PLPRO protein. Other good interacting compounds were juglanin, betulinic acid, betulonic acid, broussooflavan A, tomentin A, B and E, 7-methoxycryptopleurine, aloe emodin, quercetin, tanshinone I, tylophorine and furruginol, which also showed excellent binding affinity towards a number of target proteins. Most of these compounds showed better binding affinities towards the target proteins than the standard drugs used in this study. CONCLUSION: Natural products or their derivatives may be one of the potential targets to fight against SARS-CoV-2.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Humans , Mice , Molecular Docking Simulation , SARS-CoV-2
7.
Article in English | WPRIM (Western Pacific) | ID: wpr-928954

ABSTRACT

OBJECTIVE@#To explore potential natural products against severe acute respiratory syndrome coronavirus (SARS-CoV-2) via the study of structural and non-structural proteins of human coronaviruses.@*METHODS@#In this study, we performed an in-silico survey of 25 potential natural compounds acting against SARS-CoV-2. Molecular docking studies were carried out using compounds against 3-chymotrypsin-like protease (3CLPRO), papain-like protease (PLPRO), RNA-dependent RNA polymerase (RdRp), non-structural protein (nsp), human angiotensin converting enzyme 2 receptor (hACE2R), spike glycoprotein (S protein), abelson murine leukemia viral oncogene homolog 1 (ABL1), calcineurin-nuclear factor of activated T-cells (NFAT) and transmembrane protease serine 2.@*RESULTS@#Among the screened compounds, amentoflavone showed the best binding affinity with the 3CLPRO, RdRp, nsp13, nsp15, hACE2R. ABL1 and calcineurin-NFAT; berbamine with hACE2R and ABL1; cepharanthine with nsp10, nsp14, nsp16, S protein and ABL1; glucogallin with nsp15; and papyriflavonol A with PLPRO protein. Other good interacting compounds were juglanin, betulinic acid, betulonic acid, broussooflavan A, tomentin A, B and E, 7-methoxycryptopleurine, aloe emodin, quercetin, tanshinone I, tylophorine and furruginol, which also showed excellent binding affinity towards a number of target proteins. Most of these compounds showed better binding affinities towards the target proteins than the standard drugs used in this study.@*CONCLUSION@#Natural products or their derivatives may be one of the potential targets to fight against SARS-CoV-2.


Subject(s)
Animals , Humans , Mice , Antiviral Agents/therapeutic use , Biological Products/pharmacology , COVID-19/drug therapy , Molecular Docking Simulation , SARS-CoV-2
8.
Molecules ; 26(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833913

ABSTRACT

Dengue fever is a dangerous infectious endemic disease that affects over 100 nations worldwide, from Africa to the Western Pacific, and is caused by the dengue virus, which is transmitted to humans by an insect bite of Aedes aegypti. Millions of citizens have died as a result of dengue fever and dengue hemorrhagic fever across the globe. Envelope (E), serine protease (NS3), RNA-directed RNA polymerase (NS5), and non-structural protein 1 (NS1) are mostly required for cell proliferation and survival. Some of the diterpenoids and their derivatives produced by nature possess anti-dengue viral properties. The goal of the computational study was to scrutinize the effectiveness of diterpenoids and their derivatives against dengue viral proteins through in silico study. Methods: molecular docking was performed to analyze the binding affinity of compounds against four viral proteins: the envelope (E) protein, the NS1 protein, the NS3 protein, and the NS5 protein. Results: among the selected drug candidates, triptolide, stevioside, alepterolic acid, sphaeropsidin A, methyl dodovisate A, andrographolide, caesalacetal, and pyrimethamine have demonstrated moderate to good binding affinities (-8.0 to -9.4 kcal/mol) toward the selected proteins: E protein, NS3, NS5, and NS1 whereas pyrimethamine exerts -7.5, -6.3, -7.8, and -6.6 kcal/mol with viral proteins, respectively. Interestingly, the binding affinities of these lead compounds were better than those of an FDA-approved anti-viral medication (pyrimethamine), which is underused in dengue fever. Conclusion: we can conclude that diterpenoids can be considered as a possible anti-dengue medication option. However, in vivo investigation is recommended to back up the conclusions of this study.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Diterpenes/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Binding Sites , Computer Simulation , Dengue/drug therapy , Dengue/virology , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Drug Design , Humans , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/pharmacokinetics , Phytochemicals/pharmacology , Protein Binding , RNA Helicases/chemistry , RNA Helicases/drug effects , RNA Helicases/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/drug effects , Serine Endopeptidases/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/drug effects , Viral Envelope Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/drug effects , Viral Nonstructural Proteins/metabolism
9.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34451819

ABSTRACT

Depressive disorder is a recurrent illness that affects large numbers of the general population worldwide. In recent years, the goal of depression treatment has moved from symptomatic response to that of full remission. However, treatment-resistant depression is a major challenge in the treatment of depression or depression-related disorders. Consensus opinion, therefore, suggests that effective combined aggressive initial treatment is the most appropriate strategy. This study aimed to evaluate the effects of quercetin (QUR) and/or ascorbic acid (AA) on Phenobarbital-induced sleeping mice. QUR (50 mg/kg) and/or AA (25 mg/kg) with or without intraperitoneally pre-treated with GABA receptor agonist (diazepam: 2 mg/kg, i.p.) or antagonist (Flumazenil: 2.5 mg/kg, i.p.) to underscore the effects, as well as the possible involvement of the GABA receptor in the modulatory action of QUR and AA in sleeping mice. Additionally, an in silico study was undertaken to predict the involvement of GABA receptors in the sleep mechanism. Findings suggest that the pretreatment of QUR and AA modulated the onset and duration of action of the standard drugs in experimental animals. The acute administration of QUR and/or AA significantly (p < 0.05) reversed the DZP-mediated onset of action and slightly reversed the duration of sleep time in comparison to the vehicle (control) group. A further combination of QUR or AA with the FLU resulted in an enhancement of the onset of action while reducing the duration of action, suggesting a FLU-like effect on the test animals. In in silico studies, AA and QUR showed good to moderate binding affinities with GABAA and GABAB receptors. Both QUR and AA produced a stimulatory-like effect on mice, possibly through the GABAA and GABAB receptor interaction pathways. Further studies are necessary to verify this activity and clarify the exact mechanism of action(s) involved.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-345702

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is a rapidly emerging and highly transmissible disease caused by the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2). Understanding the microbiomes associated with the upper respiratory tract infection (URTI), chronic obstructive pulmonary disease (COPD) and COVID-19 diseases has clinical interest. We hypothesized that the diversity of microbiome compositions and their genomic features are associated with different pathological conditions of these human respiratory tract diseases (COVID-19 and non-COVID; URTI and COPD). To test this hypothesis, we analyzed 21 whole metagenome sequences (WMS) including eleven COVID-19 (BD = 6 and China = 5), six COPD (UK = 6) and four URTI (USA = 4) samples to unravel the diversity of microbiomes, their genomic features and relevant metabolic functions. The WMS data mapped to 534 bacterial, 60 archaeal and 61 viral genomes with distinct variation in the microbiome composition across the samples (COVID-19>COPD>URTI). Notably, 94.57%, 80.0% and 24.59% bacterial, archaeal and viral genera shared between the COVID-19 and non-COVID samples, respectively, however, the COVID-19 related samples had sole association with 16 viral genera other than SARS-CoV-2. Strain-level virome profiling revealed 660 and 729 strains in COVID-19 and non-COVID sequence data, respectively and of them 34.50% strains shared between the conditions. Functional annotation of metagenomics sequences of thevCOVID-19 and non-COVID groups identified the association of several biochemical pathways related to basic metabolism (amino acid and energy), ABC transporters, membrane transport, replication and repair, clustering-based subsystems, virulence, disease and defense, adhesion, regulation of virulence, programmed cell death, and primary immunodeficiency. We also detected 30 functional gene groups/classes associated with resistance to antibiotics and toxic compounds (RATC) in both COVID-19 and non-COVID microbiomes. Furthermore, a predominant higher abundance of cobalt-zinc-cadmium resistance (CZCR) and multidrug resistance to efflux pumps (MREP) genes were detected in COVID-19 metagenome. The profiles of microbiome diversity and associated microbial genomic features found in both COVID-19 and non-COVID (COPD and URTI) samples might be helpful for developing the microbiome-based diagnostics and therapeutics for COVID-19 and non-COVID respiratory diseases. However, future studies might be carried out to explore the microbiome dynamics and the cross-talk between host and microbiomes employing larger volume of samples from different ethnic groups and geoclimatic conditions.

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-320242

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causing agent of Coronavirus Disease-2019 (COVID-19), is likely to be originated from bat and transmitted through intermediate hosts. However, the immediate source species of SARS-CoV-2 has not yet been confirmed. Here, we used diversity analysis of the angiotensin I converting enzyme 2 (ACE2) that serves as cellular receptor for SARS-CoV-2 and transmembrane protease serine 2 (TMPRSS2), which has been proved to be utilized by SARS-CoV-2 for spike protein priming. We also simulated the structure of receptor binding domain of SARS-CoV-2 spike protein (SARS-CoV-2 S RBD) with the ACE2s to investigate their binding affinity to determine the potential intermediate animal hosts that could spread the SARS-CoV-2 virus to humans in South Asia. We identified cow, buffalo, goat and sheep, which are predominant species in the household farming system in South Asia that can potentially be infected by SARS-CoV-2. All the bird species studied along with rat and mouse were considered less potential to interact with SARS-CoV-2. The interaction interfaces of SARS-CoV-2 S RBD and ACE2 protein complex suggests pangolin as a potential intermediate host in SARS-CoV-2. Our results provide a valuable resource for the identification of potential hosts for SARS-CoV-2 in South Asia and henceforth reduce the opportunity for a future outbreak of COVID-19.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-218198

ABSTRACT

As the COVID-19 pandemic progresses, fatality and cases of new infections are also increasing at an alarming rate. SARS-CoV-2 follows a highly variable course and it is becoming more evident that individuals immune system has a decisive influence on the progression of the disease. However, the detailed underlying molecular mechanisms of the SARS-CoV-2 mediate disease pathogenesis are largely unknown. Only a few host transcriptional responses in COVID-19 have been reported so far from the Western world, but no such data has been generated from the South-Asian region yet to correlate the conjectured lower fatality around this part of the globe. In this context, we aimed to perform the transcriptomic profiling of the COVID-19 patients from Bangladesh along with the reporting of the SARS-CoV-2 isolates from these patients. Moreover, we performed a comparative analysis to demonstrate how differently the various SARS-CoV-2 infection systems are responding to the viral pathogen. We detected a unique missense mutation at 10329 position of ORF1ab gene, annotated to 3C like proteinase, which is found in 75% of our analyzed isolates; but is very rare globally. Upon the functional enrichment analyses of differentially modulated genes, we detected a similar host induced response reported earlier; this response was mainly mediated by the innate immune system, interferon stimulation, and upregulated cytokine expression etc. in the Bangladeshi patients. Surprisingly, we did not perceive the induction of apoptotic signaling, phagosome formation, antigen presentation and production, hypoxia response within these nasopharyngeal samples. Furthermore, while comparing with the other SARS-CoV-2 infection systems, we spotted that lung cells trigger the more versatile immune and cytokine signaling which was several folds higher compared to our reported nasopharyngeal samples. We also observed that lung cells did not express ACE2 in a very high amount as suspected, however, the nasopharyngeal cells are found overexpressing ACE2. But the amount of DPP4 expression within the nasal samples was significantly lower compared to the other cell types. Surprisingly, we observed that lung cells express a very high amount of integrins compared to the nasopharyngeal samples, which might suggest the putative reasons for an increased amount of viral infections in the lungs. From the network analysis, we got clues on the probable viral modulation for the overexpression of these integrins. Our data will provide valuable insights in developing potential studies to elucidate the roles of ethnicity effect on the viral pathogenesis, and incorporation of further data will enrich the search of an effective therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...