Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(45): 39576-39583, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29099572

ABSTRACT

Graphene fibers (GF) have aroused great interest in wearable electronics applications because of their excellent mechanical flexibility and superior electrical conductivity. Herein, an all-in-one graphene and MnO2 composite hybrid supercapacitor fiber device has been developed. The unique coaxial design of this device facilitates large-scale production while avoiding the risk of short circuiting. The core backbone of the device consists of GF that not only provides mechanical stability but also ensures fast electron transfer during charge-discharge. The introduction of a MnO2 (200 nm in length) hierarchical nanostructured film enhanced the pseudocapacitance dramatically compared to the graphene-only device in part because of the abundant number of active sites in contact with the poly(vinyl alcohol) (PVA)/H3PO4 electrolyte. The entire device exhibits outstanding mechanical strength as well as good electrocapacitive performance with a volumetric capacitance of 29.6 F cm-3 at 2 mv s-1. The capacitance of the device did not fade under bending from 0° to 150°, while the capacitance retention of 93% was observed after 1000 cycles. These unique features make this device a promising candidate for applications in wearable fabric supercapacitors.

2.
ACS Appl Mater Interfaces ; 8(39): 25941-25953, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27627198

ABSTRACT

Li-ion hybrid supercapacitors (LIHSs) have recently attracted increasing attention as a new and promising energy storage device. However, it is still a great challenge to construct novel LIHSs with high-performance due to the majority of battery-type anodes retaining the sluggish kinetics of Li-ion storage and most capacitor-type cathodes with low specific capacitance. To solve this problem, 3D graphene-wrapped MoO3 nanobelt foam with the unique porous network structure has been designed and prepared as anode material, which delivers high capacity, improved rate performance, and enhanced cycle stability. First-principles calculation reveals that the combination of graphene dramatically reduces the diffusion energy barrier of Li+ adsorbed on the surface of MoO3 nanobelt, thus improving its electrochemical performance. Furthermore, 3D graphene-wrapped polyaniline nanotube foam derived carbon is employed as a new type of capacitor-type cathode, demonstrating high specific capacitance, good rate performance, and long cycle stability. Benefiting from these two graphene foam-enhanced materials, the constructed LIHSs show a wide operating voltage range (3.8 V), a long stable cycle life (90% capacity retention after 3000 cycles), a high energy density (128.3 Wh·kg-1), and a high power density (13.5 kW·kg-1). These encouraging performances indicate that the obtained LIHSs may have promising prospect as next-generation energy-storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...