Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biomed Mater ; 19(3)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38518363

ABSTRACT

Tissue-like constructs, intended for application in tissue engineering and regenerative medicine, can be produced by three-dimensional (3D) bioprinting of cells in hydrogels. It is essential that the viability and proliferation of the encapsulated cells can be reliably determined. Methods currently used to evaluate cell proliferation, such as quantification of DNA and measurement of metabolic activity, have been developed for application in 2D cultures and might not be suitable for bioinks. In this study, human fibroblasts were either cast or printed in gelatin methacryloyl (GelMA) or sodium alginate hydrogels and cell proliferation was assessed by AlamarBlue, PicoGreen and visual cell counts. Comparison of data extrapolated from standard curves generated from 2D cultures and 3D hydrogels showed potential inaccuracies. Moreover, there were pronounced discrepancies in cell numbers obtained from these assays; the different bioinks strongly influenced the outcomes. Overall, the results indicate that more than one method should be applied for better assessment of cell proliferation in bioinks.


Subject(s)
Bioprinting , Humans , Bioprinting/methods , Printing, Three-Dimensional , Tissue Engineering/methods , Hydrogels , Gelatin , Cell Proliferation , Tissue Scaffolds
2.
Gels ; 10(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38247769

ABSTRACT

Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue engineering. The current study focused on the development of a panel of four chitosan-based polyelectrolyte hydrogels as cardiac scaffolds facilitating neo-cardiac tissue formation to promote cardiac regeneration. Chitosan-PEG (CP), gelatin-chitosan-PEG (GCP), hyaluronic acid-chitosan-PEG (HACP), and combined CP (CoCP) polyelectrolyte hydrogels were engineered by solvent casting and assessed for physiochemical, thermal, electrical, biodegradable, mechanical, and biological properties. The CP, GCP, HACP, and CoCP hydrogels exhibited excellent porosity (4.24 ± 0.18, 13.089 ± 1.13, 12.53 ± 1.30 and 15.88 ± 1.10 for CP, GCP, HACP and CoCP, respectively), water profile, mechanical strength, and amphiphilicity suitable for cardiac tissue engineering. The hydrogels were hemocompatible as evident from the negligible hemolysis and RBC aggregation and increased adsorption of plasma albumin. The hydrogels were cytocompatible as evident from the increased viability by MTT (>94% for all the four hydrogels) assay and direct contact assay. Also, the hydrogels supported the adhesion, growth, spreading, and proliferation of H9c2 cells as unveiled by rhodamine staining. The hydrogels promoted neo-tissue formation that was proven using rat and swine myocardial tissue explant culture. Compared to GCP and CoCP, CP and HACP were superior owing to the cell viability, hemocompatibility, and conductance, resulting in the highest degree of cytoskeletal organization and neo-tissue formation. The physiochemical and biological performance of these hydrogels supported neo-cardiac tissue formation. Overall, the CP, GCP, HACP, and CoCP hydrogel systems promise novel translational opportunities in regenerative cardiology.

3.
Tissue Eng Part B Rev ; 30(1): 1-14, 2024 02.
Article in English | MEDLINE | ID: mdl-37294202

ABSTRACT

Myocardial infarction results in the significant loss of cardiomyocytes (CMs) due to the ischemic injury following coronary occlusion leading to impaired contractility, fibrosis, and ultimately heart failure. Stem cell therapy emerged as a promising regenerative strategy to replenish the otherwise terminally differentiated CM to restore cardiac function. Multiple strategies have been applied to successfully differentiate diverse stem cell populations into CM-like phenotypes characterized by the expression status of signature biomarkers and observable spontaneous contractions. This article discusses the current understanding and applications of various stem cell phenotypes to drive the differentiation machinery toward CM-like lineage. Impact Statement Ischemic heart disease (IHD) extensively affects a large proportion of the population worldwide. Unfortunately, current treatments for IHD are insufficient to restore cardiac effectiveness and functionality. A growing field in regenerative cardiology explores the potential for stem cell therapy following cardiovascular ischemic episodes. The thorough understanding regarding the potential and shortcomings of translational approaches to drive versatile stem cells to cardiomyocyte lineage paves the way for multiple opportunities for next-generation cardiac management.


Subject(s)
Myocardial Infarction , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Regeneration , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Stem Cell Transplantation , Cell Differentiation
4.
Adv Drug Deliv Rev ; 203: 115142, 2023 12.
Article in English | MEDLINE | ID: mdl-37967768

ABSTRACT

As miniaturized and simplified stem cell-derived 3D organ-like structures, organoids are rapidly emerging as powerful tools for biomedical applications. With their potential for personalized therapeutic interventions and high-throughput drug screening, organoids have gained significant attention recently. In this review, we discuss the latest developments in engineering organoids and using materials engineering, biochemical modifications, and advanced manufacturing technologies to improve organoid culture and replicate vital anatomical structures and functions of human tissues. We then explore the diverse biomedical applications of organoids, including drug development and disease modeling, and highlight the tools and analytical techniques used to investigate organoids and their microenvironments. We also examine the latest clinical trials and patents related to organoids that show promise for future clinical translation. Finally, we discuss the challenges and future perspectives of using organoids to advance biomedical research and potentially transform personalized medicine.


Subject(s)
Biomedical Research , Organoids , Humans , Stem Cells , Precision Medicine/methods , Biomedical Research/methods , Drug Development
5.
Adv Sci (Weinh) ; 10(24): e2301406, 2023 08.
Article in English | MEDLINE | ID: mdl-37271889

ABSTRACT

Developing theranostic devices to detect bleeding and effectively control hemorrhage in the prehospital setting is an unmet medical need. Herein, an all-in-one theranostic platform is presented, which is constructed by sandwiching silk fibroin (SF) between two silver nanowire (AgNW) based conductive electrodes to non-enzymatically diagnose local bleeding and stop the hemorrhage at the wound site. Taking advantage of the hemostatic property of natural SF, the device is composed of a shape-memory SF sponge, facilitating blood clotting, with ≈82% reduction in hemostatic time in vitro as compared with untreated blood. Furthermore, this sandwiched platform serves as a capacitive sensor that can detect bleeding and differentiate between blood and other body fluids (i.e., serum and water) via capacitance change. In addition, the AgNW electrode endows anti-infection efficiency against Escherichia coli and Staphylococcus aureus. Also, the device shows excellent biocompatibility and gradually biodegrades in vivo with no major local or systemic inflammatory responses. More importantly, the theranostic platform presents considerable hemostatic efficacy comparable with a commercial hemostat, Dengen, in rat liver bleeding models. The theranostic platform provides an unexplored strategy for the intelligent management of hemorrhage, with the potential to significantly improve patients' well-being through the integration of diagnostic and therapeutic capabilities.


Subject(s)
Fibroins , Hemostatics , Nanowires , Rats , Animals , Precision Medicine , Silver/therapeutic use , Hemorrhage/drug therapy , Hemostatics/therapeutic use , Hemostatics/metabolism
6.
ACS Appl Bio Mater ; 6(3): 987-998, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36763504

ABSTRACT

Cellulose nanofibrils (CNFs) are multiscale hydrophilic biocompatible polysaccharide materials derived from wood and plants. TEMPO-mediated oxidation of CNFs (TO-CNF) turns some of the primary hydroxyl groups to carboxylate and aldehyde groups. Unlike carboxylic functional groups, there is little or no information about the biological role of the aldehyde groups on the surface of wood-based CNFs. In this work, we replaced the aldehyde groups in the TO-CNF samples with carboxyl groups by another oxidation treatment (TO-O-CNF) or with primary alcohols with terminal hydroxyl groups by a reduction reaction (TO-R-CNF). Rat mesenchymal stem/stromal cells (MSCs) derived from bone marrow were seeded on polystyrene tissue culture plates (TCP) coated with CNFs with and without aldehyde groups. TCP and TCP coated with bacterial nanocellulose (BNC) were used as control groups. Protein adsorption measurements demonstrated that more proteins were adsorbed from cell culture media on all CNF surfaces compared to BNC. Live/dead and lactate dehydrogenase assays confirmed that all nanocellulose biomaterials supported excellent cell viability. Interestingly, TO-R-CNF samples, which have no aldehyde groups, showed better cell spreading than BNC and comparable results to TCP. Unlike TO-O-CNF surfaces, which have no aldehyde groups either, TO-R-CNF stimulated cells, in osteogenic medium, to have higher alkaline phosphatase activity and to form more biomineralization than TCP and TO-CNF groups. These findings indicate that the presence of aldehyde groups (280 ± 14 µmol/g) on the surface of TEMPO-oxidized CNFs might have little or no effect on attachment, proliferation, and osteogenic differentiation of MSCs.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Rats , Animals , Biocompatible Materials , Cell Differentiation , Cellulose
7.
Adv Funct Mater ; 33(51)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38558868

ABSTRACT

Sac embolization of abdominal aortic aneurysms (AAAs) remains clinically limited by endoleak recurrences. These recurrences are correlated with recanalization due to the presence of endothelial lining and matrix metalloproteinases (MMPs)-mediated aneurysm progression. This study incorporated doxycycline (DOX), a well-known sclerosant and MMPs inhibitor, into a shear-thinning biomaterial (STB)-based vascular embolizing hydrogel. The addition of DOX was expected to improve embolizing efficacy while preventing endoleaks by inhibiting MMP activity and promoting endothelial removal. The results showed that STBs containing 4.5% w/w silicate nanoplatelet and 0.3% w/v of DOX were injectable and had a 2-fold increase in storage modulus compared to those without DOX. STB-DOX hydrogels also reduced clotting time by 33% compared to untreated blood. The burst release of DOX from the hydrogels showed sclerosing effects after 6 h in an ex vivo pig aorta model. Sustained release of DOX from hydrogels on endothelial cells showed MMP inhibition (ca. an order of magnitude larger than control groups) after 7 days. The hydrogels successfully occluded a patient-derived abdominal aneurysm model at physiological blood pressures and flow rates. The sclerosing and MMP inhibition characteristics in the engineered multifunctional STB-DOX hydrogels may provide promising opportunities for the efficient embolization of aneurysms in blood vessels.

8.
Front Psychol ; 13: 1004078, 2022.
Article in English | MEDLINE | ID: mdl-36225699

ABSTRACT

The current study aimed to highlight the factors that may influence teachers' psychological resistance to digital technologies in entrepreneurship and business schools. Theoretically grounded in the diffusion of innovations theory and the theory of planned behavior, the current research investigates teachers' psychological resistance to digital innovation, school culture and climate, and moderation of teacher attitudes toward educational technologies. A cross-sectional field survey of 600 business and entrepreneurship school teachers was conducted in Jordan. In this study, partial least square-structural equation modeling (PLS-SEM) was used to assess the variables' "direct and moderating impacts" using the Smart PLS software 3.0. According to the results, school culture and school innovation climate had a considerable positive impact on teachers' resistance to digital innovation. Additionally, teachers' attitudes toward educational technologies moderated the relationship between study constructs in the framework. The study is a significant advance to the literature related to entrepreneurship, business education, and digital innovation. Several key policy insights and recommendations for further research, as well as theoretical and practical implications, are suggested.

9.
Front Bioeng Biotechnol ; 9: 739225, 2021.
Article in English | MEDLINE | ID: mdl-34513817

ABSTRACT

Cell coculture strategies can promote angiogenesis within tissue engineering constructs. This study aimed to test the angiogenic potential of human umbilical vein endothelial cells (HUVEC) cocultured with gingiva-derived progenitor cells (GPC) as spheroids in a xeno-free environment. Human platelet lysate (HPL) was used as a cell culture supplement and as a hydrogel matrix (HPLG) for spheroid encapsulation. HUVEC and HUVEC + GPC (1:1 or 5:1) spheroids were encapsulated in various HPLG formulations. Angiogenesis was assessed via in vitro sprouting and in vivo chick chorioallantoic membrane (CAM) assays. HUVEC revealed characteristic in vitro sprouting in HPL/HPLG and this was significantly enhanced in cocultures with GPC (p < 0.05). A trend for greater sprouting was observed in 5:1 vs 1:1 HUVEC + GPC spheroids and in certain HPLG formulations (p > 0.05). Both HUVEC and HUVEC + GPC spheroids in HPLG revealed abundant and comparable neoangiogenesis in the CAM assay (p > 0.05). Spheroid coculture of HUVEC + GPC in HPLG represents a promising strategy to promote angiogenesis.

10.
Biomed Phys Eng Express ; 7(5)2021 08 27.
Article in English | MEDLINE | ID: mdl-34404040

ABSTRACT

Gelatin has emerged as a biocompatible polymer with high printability in scaffold-based tissue engineering. The aim of the current study was to investigate the potential of genipin-crosslinked 3D printed gelatin scaffolds for temporomandibular joint (TMJ) cartilage regeneration. Crosslinking with genipin increased the stability and mechanical properties, without any cytotoxic effects. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSC) on the scaffolds were compared to cell pellets and spheres. Although hBMSC seeded scaffolds showed a lower expression of chondrogenesis-related genes compared to cell pellets and spheres, they demonstrated a significantly reduced expression of collagen (COL) 10, suggesting a decreased hypertrophic tendency. After 21 days, staining with Alcian blue and immunofluorescence for SOX9 and COL1 confirmed the chondrogenic differentiation of hBMSC on genipin-crosslinked gelatin scaffolds. In summary, 3D printed gelatin-genipin scaffolds supported the viability, attachment and chondrogenic differentiation of hBMSC, thus, demonstrating potential for TMJ cartilage regeneration applications.


Subject(s)
Temporomandibular Joint , Tissue Scaffolds , Cartilage , Gelatin , Humans , Iridoids , Printing, Three-Dimensional
11.
Biomed Mater ; 16(3)2021 03 05.
Article in English | MEDLINE | ID: mdl-33592589

ABSTRACT

A promising alternative to current treatment options for degenerative conditions of the temporomandibular joint (TMJ) is cartilage tissue engineering, using 3D printed scaffolds and mesenchymal stem cells. Gelatin, with its inherent biocompatibility and printability has been proposed as a scaffold biomaterial, but because of its thermoreversible properties, rapid degradation and inadequate strength it must be crosslinked to be stable in physiological conditions. The aim of this study was to identify non-toxic and effective crosslinking methods intended to improve the physical properties of 3D printed gelatin scaffolds for cartilage regeneration. Dehydrothermal (DHT), ribose glycation and dual crosslinking with both DHT and ribose treatments were tested. The crosslinked scaffolds were characterized by chemical, mechanical, and physical analysis. The dual-crosslinked scaffolds had the highest degree of crosslinking and the greatest resistance to hydrolytic and enzymatic degradation. Compared to the dual-crosslinked group, the ribose-crosslinked scaffolds had thinner printed strands, larger pore surface area and higher fluid uptake. The compressive modulus values were 2 kPa for ribose, 37.6 kPa for DHT and 30.9 kPa for dual-crosslinked scaffolds. None of the crosslinking methods had cytotoxic effects on the seeded rat bone marrow-derived mesenchymal stem cells (rBMSC). After 4 and 7 d, the dual-crosslinked scaffolds exhibited better cell proliferation than the other groups. Although all scaffolds supported chondrogenic differentiation of rBMSC, dual-crosslinked scaffolds demonstrated the lowest expression of the hypertrophy-related collagen 10 gene after 21 d. The results show that 3D printed gelatin scaffolds, when dually crosslinked with ribose and DHT methods, are not toxic, promote chondrogenic differentiation of rBMSC and have potential application in tissue engineering of TMJ condylar cartilage.


Subject(s)
Cartilage/cytology , Gelatin/chemistry , Printing, Three-Dimensional , Temporomandibular Joint/cytology , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Mesenchymal Stem Cells/cytology , Rats , Regeneration , Tissue Engineering
12.
Cell Tissue Res ; 383(3): 1061-1075, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33242173

ABSTRACT

Adipose-derived stem cells (ASC) have been used as an alternative to bone marrow mesenchymal stem cells (BMSC) for bone tissue engineering. However, the efficacy of ASC in bone regeneration in comparison with BMSC remains debatable, since inconsistent results have been reported. Comparing ASC with BMSC obtained from different individuals might contribute to this inconsistency in results. Therefore, this study aimed to compare the bone regenerative capacity of donor-matched human ASC and BMSC seeded onto poly(L-lactide-co-ε-caprolactone) scaffolds using calvarial bone defects in nude rats. First, donor-matched ASC and BMSC were seeded onto the co-polymer scaffolds to evaluate their in vitro osteogenic differentiation. Seeded scaffolds and scaffolds without cells (control) were then implanted in calvarial defects in nude rats. The expression of osteogenesis-related genes was examined after 4 weeks. Cellular activity was investigated after 4 and 12 weeks. Bone formation was evaluated radiographically and histologically after 4, 12, and 24 weeks. In vitro, ASC and BMSC demonstrated mineralization. However, BMSC showed higher alkaline phosphatase activity than ASC. In vivo, human osteogenesis-related genes Runx2 and collagen type I were expressed in defects with scaffold/cells. Defects with scaffold/BMSC had higher cellular activity than defects with scaffold/ASC. Moreover, bone formation in defects with scaffold/BMSC was greater than in defects with scaffold/ASC, especially at the early time-point. These results suggest that although ASC have the potential to regenerate bone, the rate of bone regeneration with ASC may be slower than with BMSC. Accordingly, BMSC are more suitable for bone regenerative applications.


Subject(s)
Bone Marrow Cells/cytology , Bone Regeneration , Mesenchymal Stem Cells/cytology , Osteogenesis , Tissue Engineering/methods , Tissue Scaffolds , Animals , Cell Differentiation , Cells, Cultured , Child , Female , Humans , Male , Rats
13.
J Oral Sci ; 62(4): 371-376, 2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32684573

ABSTRACT

Tissue engineering for fibrocartilage regeneration using mesenchymal stromal cells (MSC) and biomaterial scaffolds is emerging as a promising strategy, but inhibiting vascularization to prevent endochondral ossification is important to develop stable implants. The objective of this study was to investigate the effect of angiostatin on inhibition of angiogenesis and promotion of chondrogenesis by collagen scaffolds with or without MSC implanted subcutaneously in rats. One scaffold from the following groups was implanted in each animal: Collagen scaffolds only, scaffolds functionalized with angiostatin, scaffolds loaded with MSC and scaffolds functionalized with angiostatin and loaded with MSC. The various scaffolds were harvested after 2 and 8 weeks for histological analysis, Real-time quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence quantification. Results demonstrated significantly decreased expression of inflammatory (interleukin 1 alpha and beta) and angiogenic genes (platelet and endothelial cell adhesion molecule 1) in scaffolds functionalized with angiostatin after 2 weeks in vivo. Histologically, after 8 weeks, the scaffolds with angiostatin had less inflammatory cells and more collagen matrix formation, but no fibrocartilage formation was detected. Thus, although angiostatin suppressed angiogenesis, it did not stimulate ectopic chondrogenesis in tissue engineered constructs in vivo.


Subject(s)
Chondrogenesis , Mesenchymal Stem Cells , Angiostatins , Animals , Collagen , Rats , Tissue Scaffolds
14.
Biofabrication ; 11(3): 035010, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30754034

ABSTRACT

A challenge in the extrusion-based bioprinting is to find a bioink with optimal biological and physicochemical properties. The aim of this study was to evaluate the influence of wood-based cellulose nanofibrils (CNF) and bioactive glass (BaG) on the rheological properties of gelatin-alginate bioinks and the initial responses of bone cells embedded in these inks. CNF modulated the flow behavior of the hydrogels, thus improving their printability. Chemical characterization by SEM-EDX and ion release analysis confirmed the reactivity of the BaG in the hydrogels. The cytocompatibility of the hydrogels was shown to be good, as evidenced by the viability of human osteoblast-like cells (Saos-2) in cast hydrogels. For bioprinting, 4-layer structures were printed from cell-containing gels and crosslinked with CaCl2. Viability, proliferation and alkaline phosphatase activity (ALP) were monitored over 14 d. In the BaG-free gels, Saos-2 cells remained viable, but in the presence of BaG the viability and proliferation decreased in correlation with the increased viscosity. Still, there was a constant increase in the ALP activity in all the hydrogels. Further bioprinting experiments were conducted using human bone marrow-derived mesenchymal stem cells (hBMSCs), a clinically relevant cell type. Interestingly, hBMSCs tolerated the printing process better than Saos-2 cells and the ALP indicated BaG-stimulated early osteogenic commitment. The addition of CNF and BaG to gelatin-alginate bioinks holds great potential for bone tissue engineering applications.


Subject(s)
Alginates/chemistry , Bioprinting , Cellulose/chemistry , Gelatin/chemistry , Glass/chemistry , Mesenchymal Stem Cells/cytology , Nanoparticles/chemistry , Wood/chemistry , Alkaline Phosphatase/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Humans , Hydrogels/chemistry , Ink , Osteogenesis , Printing, Three-Dimensional , Rheology , Swine
15.
Mater Sci Eng C Mater Biol Appl ; 97: 208-221, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30678905

ABSTRACT

Two wood-derived cellulose nanofibril (CNF) porous scaffolds were prepared by TEMPO-oxidation and carboxymethylation. The effects of these scaffolds on the production of inflammatory cytokines by human macrophage-like cells (U937) was profiled in vitro after 1 and 3 days and in subcutaneous tissues of rats after 4 and 30 days, using PCR and Multiplex arrays. Tissue culture plates (TCP) and gelatin scaffolds served as controls in vitro and in vivo respectively. After 3 days in vitro, there was no significant difference between the effects of CNF scaffolds and TCP on the production of chemokines/growth factors and pro-inflammatory cytokines. At day 4 in vivo there was significantly higher gene expression of the anti-inflammatory IL-1Ra in the CNF scaffolds than the gelatin scaffold. Production of IL-1ß, IL-6, MCP-1, MIP-1α CXCL-1 and M-CSF was significantly less than in the gelatin, demonstrating an early mild inflammatory response. At day 30, both CNF scaffolds significantly stimulated the production of the anti-inflammatory cytokine IL-10. Unlike gelatin, neither CNF scaffold had degraded 180 days post-implantation. The slow degradation of CNF scaffolds resulted in a foreign body reaction, with high production of IL-1ß, IL-2, TNF-α, IFN-ϒ, MCP-1, MIP-1α, M-CSF, VEGF cytokines and expression of MMP-9 gene. The surface chemistry of the CNF scaffolds elicited a modest effect on cytokine production and did not shift the inflammatory profile in vitro or in vivo. The decisive role in development of the foreign body reaction was the slow degradation of the CNF scaffolds.


Subject(s)
Cellulose/chemistry , Inflammation/etiology , Nanostructures/adverse effects , Tissue Scaffolds/adverse effects , Wood/chemistry , Animals , Cell Proliferation , Cellulose/adverse effects , Cytokines/metabolism , Female , Gene Expression Regulation , Humans , Implants, Experimental , Inflammation/chemically induced , Inflammation/metabolism , Materials Testing/methods , Nanostructures/chemistry , Rats, Wistar , Tissue Scaffolds/chemistry , U937 Cells
16.
Mater Sci Eng C Mater Biol Appl ; 94: 867-878, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30423774

ABSTRACT

Biopolymers such as gelatin (Gel) and cellulose nanofibrils (CNF) have many of the essential requirements for being used as scaffolding materials in tissue regeneration; biocompatibility, surface chemistry, ability to generate homogeneous hydrogels and 3D structures with suitable pore size and interconnection, which allows cell colonization and proliferation. The purpose of this study was to investigate whether the mechanical behaviour of the Gel matrix can be improved by means of functionalization with cellulose nanofibrils and proper cross-linking treatments. Blending processes were developed to achieve a polymer nanocomposite incorporating the best features of both biopolymers: biomimicry of the Gel and structural reinforcement by the CNF. The designed 3D structures underline interconnected porosity achieved by freeze-drying process, improved mechanical properties and chemical stability that are tailored by CNF addition and different cross-linking approaches. In vitro evaluations reveal the preservation of the biocompatibility of Gel and its good interaction with cells by promoting cell colonization and proliferation. The results support the addition of cellulose nanofibrils to improve the mechanical behaviour of 3D porous structures suitable as scaffolding for tissue regeneration.


Subject(s)
Cellulose/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Polymers/chemistry , Regeneration , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line , Cell Shape , Cell Survival , Compressive Strength , Cross-Linking Reagents/chemistry , Fibroblasts/cytology , Mice , Mitochondria/metabolism , Nanocomposites/ultrastructure , Nanofibers/ultrastructure , Porosity , Thermogravimetry
17.
Biomacromolecules ; 19(11): 4307-4319, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30296827

ABSTRACT

3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase release assays confirmed that CNF did not inhibit cellular viability. The CNF between the 3D printed PCL strands and pores acted as a hydrophilic barrier, enhancing cell seeding efficiency, and proliferation. CNF supported the formation of a well-organized actin cytoskeleton and cellular production of vinculin protein on the surfaces of TCP and PCL scaffolds. Moreover, CNF-coated surfaces enhanced not only alkaline phosphatase activity, but also collagen Type-I and mineral formation. It is concluded that CNF coating enhances cell attachment, proliferation, and osteogenic differentiation and has the potential to improve the performance of 3D printed PCL scaffolds for bone tissue engineering.


Subject(s)
Cell Differentiation , Cellulose/chemistry , Mesenchymal Stem Cells/cytology , Nanostructures/chemistry , Osteogenesis , Polyesters/chemistry , Printing, Three-Dimensional , Tissue Scaffolds , Calcification, Physiologic , Cell Proliferation , Cells, Cultured , Humans , Surface Properties , Tissue Engineering/methods
18.
Biomacromolecules ; 18(4): 1238-1248, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28263573

ABSTRACT

The current study aims to demonstrate the influence of the surface chemistry of wood-derived cellulose nanofibril (CNF) hydrogels on fibroblasts for tissue engineering applications. TEMPO-mediated oxidation or carboxymethylation pretreatments were employed to produce hydrogels with different surface chemistry. This study demonstrates the following: first, the gelation of CNF with cell culture medium and formation of stable hydrogels with improved rheological properties; second, the response of mouse fibroblasts cultured on the surface of the hydrogels or sandwiched within the materials with respect to cytotoxicity, cell attachment, proliferation, morphology, and migration. Indirect cytotoxicity tests showed no toxic effect of either hydrogel. The direct contact with the carboxymethylated hydrogel adversely influenced the morphology of the cells and limited their spreading, while typical morphology and spreading of cells were observed with the TEMPO-oxidized hydrogel. The porous fibrous structure may be a key to cell proliferation and migration in the hydrogels.


Subject(s)
Biocompatible Materials/chemistry , Cellulose/chemistry , Hydrogels/chemistry , Nanostructures/chemistry , Wood/chemistry , Animals , Cell Movement , Cell Proliferation , Cell Survival , Cells, Cultured , Fibroblasts/chemistry , Fibroblasts/cytology , Mice , Porosity , Rheology , Spectroscopy, Fourier Transform Infrared , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...