Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Pharm Res ; 21(1): e130474, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36915404

ABSTRACT

Background: Stimuli-responsive drug delivery systems have been proven to be a promising strategy to enhance tumor localization, overcome multidrug resistance (MDR), and reduce the side effects of chemotherapy agents. Objectives: In this study, a temperature and redox dual stimuli-responsive system using mesoporous silica nanoparticles (MSNs) for targeted delivery of doxorubicin (DOX) was developed. Methods: Mesoporous silica nanoparticles were capped with poly(N-isopropylacrylamide) (PNIPAM), a thermo-sensitive polymer, with atom transfer radical polymerization (ATRP) method, via disulfide bonds (DOX-MSN-S-S-PNIPAM) to attain a controlled system that releases DOX under glutathione-rich (GSH-rich) environments and temperatures above PNIPAM's lower critical solution temperature (LCST). Morphological and physicochemical properties of the nanoparticles were indicated using transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Brunauer-Emmett-Teller (BET). The drug release tests were performed at 25°C and 41°C in the absence and presence of the DTT, and the obtained results confirmed the synergic effect of temperature and reductive agent on a dual responsive release profile with a 73% cumulative release at 41°C and reductive environment during 240 min. Results: The average loaded drug content and encapsulation efficacy were reported as 42% and 29.5% at the drug: nanoparticle ratio of 1.5: 1. In vitro cytotoxicity assays on MCF-7 cell lines indicated significant viability decreased in cells exposed to DOX-MSN-S-S-PNIPAM compared to the free drug (DOX). Conclusions: Based on the results, DOX-MSN-S-S-PNIPAM has shown much more efficiency with stimuli-responsive properties in comparison to DOX on MCF-7 cancer cell lines.

2.
Iran J Pharm Res ; 21(1): e129409, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36942076

ABSTRACT

Background: Efavirenz nanosuspensions (EZ-NSs) were developed by the wet milling method as the most promising top-down nanosizing technique. Different process and formulation parameters were studied and optimized to produce appropriate EZ-NS in suitable conditions to enhance drug dissolution. Methods: In the preliminary studies, various polymeric stabilizers, including Pluronic F68, sodium carboxymethylcellulose (CMC), hydroxypropyl methylcellulose (HPMC), and polyvinyl alcohol (PVA), as well as different sizes and weight of milling beads were used to prepare NSs. The effect of sodium lauryl sulfate (SLS) concentration on the NS properties was also evaluated. The influence of other formulation and process parameters, including polymer concentration, milling speed, and milling time, on the particle size and distribution of NSs were investigated using Box-Behnken design. The optimized freeze-dried nanosuspension was characterized by redispersibility, physicochemical properties, and stability. Results: A combination of PVA and SLS was selected as steric and electrostatic stabilizers. The optimum EZ-NS displayed a uniform size distribution with a mean particle size and zeta potential of 254.4 nm and 21.1 mV, respectively. The solidified nanosuspension was well redispersed to the original nanoparticles. Significantly enhanced aqueous solubility (about 11-fold) and accelerated dissolution rate were observed for the optimized formulation. This could be attributed to the reduced particle size and partial amorphization of EZ during the preparation process, studied by X-ray diffraction. Accelerated studies confirmed the stability of the optimum freeze-dried formulation over the examined period of three months. Conclusions: Optimization of different variables led to the formation of EZ-NSs with desired properties through wet milling in a very short time compared to the previous study and therefore reduced production costs. This formulation seems to be a suitable approach for solubility and dissolution enhancement of EZ and may have a great potential to improve the drug's oral bioavailability.

SELECTION OF CITATIONS
SEARCH DETAIL
...