Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ocul Immunol Inflamm ; : 1-6, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36809240

ABSTRACT

PURPOSE: To report the availability and activity of online uveitis support groups. METHODS: An online search was conducted for support groups for uveitis. Member count and activity were recorded. Posts and comments were graded along five themes: emotional or personal story sharing, information seeking, offer of outside information, emotional support, and expressions of gratitude. RESULTS: An online search resulted in 32 support groups for uveitis. Across all groups, there was a median membership of 725 (IQR 1410.5). Of the 32 groups, five were active and accessible at the time of study. In these five groups, 337 posts and 1406 comments were made within the past year. The most prevalent theme in posts consisted of information seeking (84%) while the most prevalent theme in comments consisted of emotion or personal story sharing (65%). CONCLUSIONS: Online uveitis support groups provide a unique space for emotional support, information sharing, and community building.Abbreviations: OIUF - Ocular Inflammation and Uveitis Foundation.

2.
Ophthalmol Sci ; 3(2): 100255, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36619716

ABSTRACT

Purpose: To report an image analysis pipeline, DDLSNet, consisting of a rim segmentation (RimNet) branch and a disc size classification (DiscNet) branch to automate estimation of the disc damage likelihood scale (DDLS). Design: Retrospective observational. Participants: RimNet and DiscNet were developed with 1208 and 11 536 optic disc photographs (ODPs), respectively. DDLSNet performance was evaluated on 120 ODPs from the RimNet test set, for which the DDLS scores were graded by clinicians. Reproducibility was evaluated on a group of 781 eyes, each with 2 ODPs taken within 4 years apart. Methods: Disc damage likelihood scale calculation requires estimation of optic disc size, provided by DiscNet (VGG19 network), and the minimum rim-to-disc ratio (mRDR) or absent rim width (ARW), provided by RimNet (InceptionV3/LinkNet segmentation model). To build RimNet's dataset, glaucoma specialists marked optic disc rim and cup boundaries on ODPs. The "ground truth" mRDR or ARW was calculated. For DiscNet's dataset, corresponding OCT images provided "ground truth" disc size. Optic disc photographs were split into 80/10/10 for training, validation, and testing, respectively, for RimNet and DiscNet. DDLSNet estimation was tested against manual grading of DDLS by clinicians with the average score used as "ground truth." Reproducibility of DDLSNet grading was evaluated by repeating DDLS estimation on a dataset of nonprogressing paired ODPs taken at separate times. Main Outcome Measures: The main outcome measure was a weighted kappa score between clinicians and the DDLSNet pipeline with agreement defined as ± 1 DDLS score difference. Results: RimNet achieved an mRDR mean absolute error (MAE) of 0.04 (± 0.03) and an ARW MAE of 48.9 (± 35.9) degrees when compared to clinician segmentations. DiscNet achieved 73% (95% confidence interval [CI]: 70%, 75%) classification accuracy. DDLSNet achieved an average weighted kappa agreement of 0.54 (95% CI: 0.40, 0.68) compared to clinicians. Average interclinician agreement was 0.52 (95% CI: 0.49, 0.56). Reproducibility testing demonstrated that 96% of ODP pairs had a difference of ≤ 1 DDLS score. Conclusions: DDLSNet achieved moderate agreement with clinicians for DDLS grading. This novel approach illustrates the feasibility of automated ODP grading for assessing glaucoma severity. Further improvements may be achieved by increasing the number of incomplete rims sample size, expanding the hyperparameter search, and increasing the agreement of clinicians grading ODPs.

3.
Ophthalmol Sci ; 3(1): 100244, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36545262

ABSTRACT

Purpose: Accurate neural rim measurement based on optic disc imaging is important to glaucoma severity grading and often performed by trained glaucoma specialists. We aim to improve upon existing automated tools by building a fully automated system (RimNet) for direct rim identification in glaucomatous eyes and measurement of the minimum rim-to-disc ratio (mRDR) in intact rims, the angle of absent rim width (ARW) in incomplete rims, and the rim-to-disc-area ratio (RDAR) with the goal of optic disc damage grading. Design: Retrospective cross sectional study. Participants: One thousand and twenty-eight optic disc photographs with evidence of glaucomatous optic nerve damage from 1021 eyes of 903 patients with any form of primary glaucoma were included. The mean age was 63.7 (± 14.9) yrs. The average mean deviation of visual fields was -8.03 (± 8.59). Methods: The images were required to be of adequate quality, have signs of glaucomatous damage, and be free of significant concurrent pathology as independently determined by glaucoma specialists. Rim and optic cup masks for each image were manually delineated by glaucoma specialists. The database was randomly split into 80/10/10 for training, validation, and testing, respectively. RimNet consists of a deep learning rim and cup segmentation model, a computer vision mRDR measurement tool for intact rims, and an ARW measurement tool for incomplete rims. The mRDR is calculated at the thinnest rim section while ARW is calculated in regions of total rim loss. The RDAR was also calculated. Evaluation on the Drishti-GS dataset provided external validation (Sivaswamy 2015). Main Outcome Measures: Median Absolute Error (MAE) between glaucoma specialists and RimNet for mRDR and ARW. Results: On the test set, RimNet achieved a mRDR MAE of 0.03 (0.05), ARW MAE of 31 (89)°, and an RDAR MAE of 0.09 (0.10). On the Drishti-GS dataset, an mRDR MAE of 0.03 (0.04) and an mRDAR MAE of 0.09 (0.10) was observed. Conclusions: RimNet demonstrated acceptably accurate rim segmentation and mRDR and ARW measurements. The fully automated algorithm presented here would be a valuable component in an automated mRDR-based glaucoma grading system. Further improvements could be made by improving identification and segmentation performance on incomplete rims and expanding the number and variety of glaucomatous training images.

SELECTION OF CITATIONS
SEARCH DETAIL
...