Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(9): 5729-5739, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38370454

ABSTRACT

Graphene exhibits remarkable properties and holds substantial promise for diverse applications. Its unique combination of thermal, chemical, physical, and biological properties makes it an appealing material for a wide range of uses. But, the lack of an economical and environmentally friendly approach to synthesize good-quality graphene represents an immense challenge for the scientific community. What makes this research unique is the utilization of the defensive gland extract from the beetle species Luprops tristis (Order: Coleoptera, Family: Tenebrionidae) to synthesize a few layers of graphene (FLG). This innovative incorporation of natural resources and exploration of biologically inspired methods provides an eco-friendly and cost-effective alternative to conventional graphene production techniques. The exfoliated graphene displayed antimicrobial effects against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, with particularly potent bactericidal activity. Additionally, the cytotoxicity assay demonstrated the anti-cancer properties of biosynthesized graphene against Daltons Lymphoma Acetic (DLA) cells.

2.
Tissue Eng Part A ; 19(17-18): 1984-93, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23544950

ABSTRACT

Electrically conducting polymers are prospective candidates as active substrates for the development of neuroprosthetic devices. The utility of these substrates for promoting differentiation of embryonic stem cells paves viable routes for regenerative medicine. Here, we have tuned the electrical and mechanical cues provided to the embryonic stem cells during differentiation by precisely straining the conducting polymer (CP) coated, elastomeric-substrate. Upon straining the substrates, the neural differentiation pattern occurs in form of aggregates, accompanied by a gradient where substrate interface reveals a higher degree of differentiation. The CP domains align under linear stress along with the formation of local defect patterns leading to disruption of actin cytoskeleton of cells, and can provide a mechano-transductive basis for the observed changes in the differentiation. Our results demonstrate that along with biochemical and mechanical cues, conductivity of the polymer plays a major role in cellular differentiation thereby providing another control feature to modulate the differentiation and proliferation of stem cells.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Polymers/chemistry , Polymers/pharmacology , Animals , Cell Differentiation/drug effects , Cell Line , Mice , Neural Stem Cells/cytology , Neural Stem Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...